PEEDI

Powerful Embedded Ethernet Debug Interface

User’s Manual
Version 2.00

RONETHI

DEVELOPMENT TOOLS

Acknowledgement

March, 2018

Ronetix has made every attempt to ensure that the information in this document is accurate and complete.
However, Ronetix assumes no responsibility for any errors, omissions, or for any consequences resulting
from the use of the information included herein or the equipment it accompanies. Ronetix reserves the right
to make changes in its products and specifications at any time without notice. Any software described in this
document is furnished under a license or non-disclosure agreement. It is against the law to copy this software
on magnetic tape, disk, or other medium for any purpose other than the licensee’s personal use.

Ronetix Development Tools GmbH
Giefinggasse 2

1210 Vienna

Austria

Tel: +43 1236 1101
Fax: +43 1236 11019
Web: www.ronetix.at

E-Mail: info@ronetix.at
Acknowledgments:

ARM, ARM7, ARM9, ARM11, Cortex-M, Cortex-A and Thumb are trademarks of ARM Ltd.
PowerPC and ColdFire are trademarks of Freescale Ltd.

Blackfin is trademark of Analog Devices Ltd.

Windows, Win32, Windows CE are trademarks of Microsoft Corporation.

Ethernet is a trademark of XEROX.

MIPS is a trademark of MIPS Technologies.

AVR32 is a trademark of Atmel.

All other trademarks are trademarks of their respective companies.

Copyright© 2005-2018 Ronetix Development Tools GmbH
All rights reserved.

PEEDI User’s Manual 1 www.ronetix.at

http://www.ronetix.at
mailto:info@ronetix.at
http://www.ronetix.at

Contents

Contents

1

Introduction 8
1.1 PEEDIlinthe developmentprocess 8
1.1.1 Single developer environment L 8
1.1.2 Multiple developers environment Lo 9

1.2 PEEDIinthe manufacturingprocess e 10
1.2.1 PEEDI as a standalone FLASH programmer 10
1.22 PEEDlasadevicetester 11
1.2.3 High productivity with the Multi Core feature 11
Installation 13
2.1 Hardware installation e 13
2.1.1 Connectioninstructions 13

2.2 Softwareinstallation 14
Using PEEDI 15
3.1 PEEDlinterface e 15
3.2 SetupwithRedBoot e 16
3.2.1 RedBoot Configuration 16
3.2.2 Firmware update procedure 17
Update via RS232 17

Updatevia Ethernet 18

3.2.3 RedBoot commands used with PEEDI 19
feonfig e 19

update e 20

memtest 20

3.3 Configure PEEDI e 20
3.3.1 Network configuration 20
3.3.2 Targetconfigurationfile 21
Section LICENSE 21

Section DEBUGGER 21
PROTOCOL e e 22

REMOTE_PORT e 22

FLASH FLASHN 22

Section TARGET 22
PLATFORM e 22

Section PLATFORM_ARM 23

Global parameters for all ARMcores, 23

JTAG_CHAIN . . . e 23

JTAG_CLOCK e 23
JTAG_TDO_DELAY . . . e 23

TRST_TYPE . . . e 23

RESET_TIME 24

WAKEUP_TIME 24
TIME_AFTER_RESET 24

WDKICK_TIME e 24
DBGREQ_OUTPUT e e 24

Core specific parameters 24

COREN . . . 25
CORENn_STARTUP_MODE e 25

COREN_INIT . . . 25

CORENn_FLASHmM 25

COREN_ENDIAN 26
CORENn_VECTOR_CATCH_MASK 26
CORENn_BREAKMODE 26
CORENn_BREAK_PATTERN o 27
COREn_WORKSPACE 27

PEEDI User’s Manual 2 www.ronetix.at

http://www.ronetix.at

Contents

COREN_DATASPACE e e 27
COREN_DCC_PORT e e s e s e s 27
COREN_PATH e 27
COREN_FILE e 28
CORENn_LOCKOUT_RECOVERY 28
COREN_OS e 28
Section PLATFORM_ARM11 29
COREN e 29
COREn_USE_FAST DOWNLOAD 29
COREN_DCC_PORT e e e s e e e 29
Section PLATFORM_Cortex-M & Section PLATFORM_Cortex-M_SWD 29
COREN e 30
PERIODIC_TASK e e 30
COREN_SWO e 30
CORENn_PROFILING e 31
Section PLATFORM_Cortex-A e 31
COREN e 31
Section PLATFORM_XSCALE 31
COREN e 32
COREn_USE_FAST DOWNLOAD 32
COREn_DEBUG_HANDLER _ADDR 32
CORENn_VECTOR/RELOCATED_UNDEF/SWI/PABORT/DABORT/RES/IRQ/FIQ 33
Section PLATFORM_MPC5200 ittt 33
COREN e 33
CORENn_BOOT_ADDR e e 33
CORENn_MEMDELAY e 34
Section PLATFORM_MPC5500 it .. 34
COREN e 34
CORENn_NEXUS3 _ACCESS et 34
MPC5XXX_AUX_TAP_CMDCOREn_AUX_TAP. CMD 34
Section PLATFORM_MPC8300 it 35
COREN e 35
CORENn_BOOT _ADDR e 35
COREN_RCW . . . e 35
COREn_MMU _PTBASE e 35
Section PLATFORM_MPC8500 it 36
COREN e 36
COREn_MMU_TRANS e 36
COREn_MMU _PTBASE e 36
Section PLATFORM _QorlQ P 36
COREN e 37
CORENn_REGLIST e 37
COREn_MMU_TRANS e 37
COREn_MMU _PTBASE e 37
COREn_PMEM BASE e 37
Section PLATFORM_PPC400 et 38
COREN e 38
Section PLATFORM_COLDFIRE e 38
BDM_CLOCK e 38
CORE e 38
CORE_MEMMAP e 39
Section PLATFORM_BLACKFIN o 39
COREN e 39
COREN_VMEM e 40
COREn_VMEM _WINDOW et 40
COREn_VMEM_PINS e 40
CORE_MEMMAP e 41
Section PLATFORM_MIPS 41

PEEDI User’s Manual 3 www.ronetix.at

http://www.ronetix.at

Contents

COREN . . . 41
Section PLATFORM_AVR32 41
COREN . . . 41
CORENn_BLOCK_ACCESS 42
Section INIT L 42
Section FLASH 43
NOR FLASH programming i it 43
[2C Programming 44
SPIFLASH programming 44
NAND FLASH programming 46
OneNAND FLASH programming i 51
MMC/SD card programmingo e 51
Atmel SAM3/SAM4 programmingo 52
Atmel AVR32UC3 programming o oo 52
Freescale Kinetis programming 52
Tl/Luminary LM3S programming 52
NXP LPC2000 programming o v v v vt e e e e 53
Nordic Semiconductor nRF51 ans nRF52 programming 55
Freescale MAC7100 programming o v v v i i it 55
Freescale ColdFire V2 programming 57
Freescale MPC5000 programming o v v i i i i 57
ST STM32 programming i e 57
ST STR7 programming o 0 i 58
STSTRO programming o o 59
TITMS570 programming o ot 59
TITMS470 programming o oo e 59
PIC32, SmartFusion A2F, ADuC, EFM32 programming 60
CHIP . 61
PART_ID . . . 61
PARTITION e 61
BANK . . e 61
CHECK_ID e 62
ACCESS_METHOD 62
CHIP_WIDTH 62
CHIP_COUNT e e 62
CHIP_SIZE 63
BASE_ADDR e 63
FILE . . e 63
SPI_MODE 63
AUTO_ERASE e 63
AUTO_LOCK . . . 64
CPU_CLOCK 64
SECURE_FLASH 64
SET_VECTORS_CHECKSUM 64
DATA_BANK . . e 65
BANK_SIZE e 65
F2F4_PSIZE e 65
PROTECTION_KEYO - PROTECTION_KEY3 65
ALLOW_ZERO_KEYS e 66
CPU . . 66
SPI_DIV . . 66
NSPl . 66
NCS . . e 67
SPI_SPCKSPI_MISOSPI_MOSISPI_CS 67
CMD_BASE 67
DATA_BASE e 67
ADDR_BASE e 68

CS_ASSERT/RELEASEALE_ASSERT/RELEASECLE_ASSERT/RELEASE . . 68

PEEDI User’s Manual 4 www.ronetix.at

http://www.ronetix.at

Contents

BAD BLOCK TABLE . . . o o oot 68
BAD BLOCKS . . . o oo 68
ERASE BAD BLOCKS o oo 68
SWAP Bl o o oo 69
QOB INFO . o\ oo e 70
DAVINCI_UBL_DESCIPTOR MAGIC o oo 71
DAVINCI_UBL_DESCIPTOR_ENTRY POINT i .. 71
DAVINC|_UBL_DESCIPTOR_LOAD ADDR oo ot 71
DAVINCI_UBL_MAX_IMAGE SIZE o i 71
NUM ECC . o o oo e e 71
HEADER . . . o oo 72
IPS_ BASE . . o o o 72
SPIFL BASE . . o o oo 72
NCB DATA . . o o oo 72
LDLB_DATA . . o o o o e e e 72
SERIAL NUM . . . oo 73
[2C_ADDR . . o o 73
[2C DELAY . . o oo 73

SDA_SETSDA_CLRSDA_INSDA_OUTSDA_READSCL_SETSCL_CLR 74
CS_ASSERTCS_RELEASESCLK_SETSCLK_CLRMOSI_SETMOSI_CLRMISO_READ 74

Section OS L 74

ITEM . e 75

Section SERIAL 75

BAUD e 76

STOP_BITS e 76

PARITY . . e 76

TCP_PORT e 76

Section TELNET 76

PROMPT . . e 77

BACKSPACE e 77

Section DISPLAY e 77

VOLUME e 77

Section ACTIONS 77

3.4 CPU specific considerations 79
3.4.1 Philips LPC2000 family 79
3.42 STSTM32family 79
3.4.3 Intel XScale family e 79
3.4.4 Freescale PowerQUICC Il Pro MPC83XX family 80
3.4.5 Analog Devices Blackfin family 81

3.5 Bootsequence e 81
3.6 Multiple core support e 83
3.7 Script execution using the front panelinterface 85
3.8 Seriallnterface 86
3.9 ARMDCC Interface e 86
3.10 Working with Insight/gdb 87
3.11 Debugging Linux kernel e 88
3.12 Target OS thread awareness i e 89
3.13 Working with CLI (Command Line Interface) 91
3.13.1 Filepathconvention e 91
3.1832 CLIcommands e 93
help . . o e 93

transfer 93

ype . e 94

Wait .o e 94

070 > 94

Clock . . . 95

FUN L L o e e e e e e e 95

00 . o e 96

PEEDI User’s Manual 5 www.ronetix.at

http://www.ronetix.at

Contents

OM L 96
Step . . . 97
execute 97
Sel . e 98
halt . . e 98
reset 99
reboot 99
eChO . . L 100
g . e 100
beep 100
target L 101
QUIL o o 101
INfO . L 101
infoflash 102
inforegisters 102
infotarget 102
infoconfig 103
infoice e 103
infocp15,infocpl14 L 103
infospr . . L 105
infoctrl . . 105
info breakpoint L 105
MEMOIY . . . ot e e e e e e e e e e e e 106
memory read e e e 106
MeMOry WHte 107
MEMOIY OF o o et e e e e e e e e e e 107
Memory and e 108
MEMOIY CIC . . . o o ot ot e e e e e e e e e e e e e e e 108
memory load 109
memory multiload 109
memory verify 110
Memory dump e e 110
memorytest 110
flash . . . e 111
flashset e 111
flashblank e 111
flasherase e 112
flashlock e 112
flashunlock 112
flash query 113
flash program L 113
flashmultierase 114
flashmultiblank 114
flash multiprogram L 115
flashmultiverify o 115
flash verify 116
flashdump e 116
flashread e 117
flashinfo 117
flashfind 117
flashtest 118
flasharea e 118
flashthis e 119
flash thishidden 119
flashthismarkbad 119
flashthisnvmbit 120
flash thissecure L 120
flash thisoption 120

PEEDI User’s Manual 6 www.ronetix.at

http://www.ronetix.at

Contents

flash thisoption
flashthiswrite
flashthispart
flashthisprot
flash thisprotread
flash this prot program
flashthisppb
flash thisisc erase
flash thisisc_conf write
flash thisisc_conf read

flash this isc_conf_boot_bank

flash thisisc_conf lock
breakpoint oo
breakpointadd
breakpointaddhard
breakpointaddwatch
breakpointdelete
breakpointlist
card
cardcd
cardmd
cardrd
carddir
CardCopy e
cardtype
carddelete
cardrename
EEPIOM . . . o e e
eepromdir
€EPIOM COPY « « « v o e e e e e e e
eepromtype
eepromdelete
€EProM rename e e
eepromformat
eepromalias
test
3.183 Usingaliases
3.1834 Usingscripts o

3.14 Working with the FLASH programmer

3.15 Multiple FLASH support

3.16 Working with a MMC/SD memory card

3.17 JTAG cable adapters
3.18 PEEDIlicenses

4 Specifications

4.1 JTAG Targetconnectorsignals
4.2 RS232 Connector (DBOF, female)
43 Schematics

5 FAQ

6 Glossary

7 PEEDI Package contents
8 Warranty

A Sample target configuration files

145
147
148

149

PEEDI User’s Manual

www.ronetix.at

http://www.ronetix.at

Introduction

1 Introduction

PEEDI (Powerful Embedded Ethernet Debug Interface) is an EmbeddedICE solution that enables you to
debug software running a wide variety of processor cores via the JTAG port. JTAG is an IEEE standardized
protocol that enables full control of the CPU core, giving the opportunity to debug embedded software. The
PEEDI will help to reduce Time-To-Market and increase the quality of the end product.

PEEDI is a debugging and development tool that provides the ability to see what is taking place in the target
system and control its behavior. PEEDI provides the services needed to perform all debugging operations.
It receives command packets over the communication link and translates them into JTAG operations that are
needed to provide the specific service. It can control the operation of the target processor and target system,
start and stop the processor's execution; it can set breakpoints in a program, examine and store values in the
processor’s registers, and examine and store program code or data in the target system’s memory.

PEEDI can work in cooperation with a host computer or autonomously using a MMC/SD card.

1.1 PEEDI in the development process

In the development process PEEDI can be used mainly as a debugger JTAG interface and FLASH program-
mer.

Two major configurations are possible here:

- Single developer environment

- Multiple developers environment

1.1.1 Single developer environment

Using the developer’s PC as a host computer - this is suitable for small projects. Here all necessary tools for
compiling and debugging the project must be installed on the developers PC, including file server (TFTP, FTP
or HTTP) allowing PEEDI to retrieve configuration files or executable images. In this (Figure 1) configuration
the developer’s PC must be connected to PEEDI in a common LAN using crossover patch cable or by Ethernet
via hub/switch.

PEEDI User’s Manual 8 www.ronetix.at

http://www.ronetix.at

Introduction

Figure 1: A simple configuration

Ethernet
Hub

Linux host or
Windows + Cygwin

arm-elf-gcc
arm-elf-ld

arm-elf-insight Ethernet

1.1.2 Multiple developers environment

Dedicated server with all the necessary development tools installed is used for a host. The developer uses a
PC only as a graphical terminal to logon to the server. No specific software is installed on the developer’s PC,
so it is very easy to set another working environment for a new developer for the project - just add a new user
on the server and make a copy of the project source and make files in the user’s home directory. Of course
any source control tool, such as CVS or Visual Source Safe, can be used for synchronizing the project files. In
this configuration (Figure 2) all devices (the server, the developers’ PCs and all PEEDIs) must be connected
in a common LAN.

PEEDI User’s Manual 9 www.ronetix.at

http://www.ronetix.at

Introduction

Figure 2: An example of multiple programmer development

Linux Server
X-server

TFTP
Samba Ethernet
arm-elf-gcc Hub
arm-elf-ld
arm-elf-
insight

< RAPEEDI
Q . 9
"ﬂ Target !‘Jﬁ Target £ J Target
Linux Workstation Linux Workstation Windows Workstation

Cygwin/X terminal

1.2 PEEDI in the manufacturing process

PEEDI can be used in the manufacturing process as a tool for testing the device after it is assembled and as
a FLASH programmer to program the device firmware. In both scenarios the host computer is not required
because all the operations can be formed as script files and executed using the PEEDI’s front panel interface.
If all the necessary files are stored on the MMC/SD card the Ethernet connection is not required as well.

1.2.1 PEEDI as a standalone FLASH programmer

PEEDI can be used as a FLASH programmer in two ways:

- The first way (Figure 3) is to connect to PEEDI via telnet and execute FLASH command and script files
from the command line interface (CLI). This method enables users to see all the status messages in an
easy, understable format i.e. warnings and errors and therefore, maybe the preferred method.

PEEDI User’s Manual 10 www.ronetix.at

http://www.ronetix.at

Introduction

Figure 3:

Host

Crossover cable

/ PEEDI

& - &

Target 1 Target 2 Target N

- The second way (Figure 4) is to use the front panel interface to choose, start and observe the status of
scripts, which invokes the desired FLASH commands. Here you can define an AUTORUN script to be
executed every time a target is connected; this way there is no need to start the script manually - very
useful and time saving when large volumes of target boards need to be programmed.

Figure 4:
PEEDI
Target 1 Target 2 Target N

1.2.2 PEEDI as a device tester

Here the PEEDI can be used in the same manner as in the previous section - making telnet connection or
through the front panel interface.

Depending on the specifics of what is to be tested two options can be applied:

- Execute commands that directly make some sort of testi.e. £lash verify, memory test, etc.

- Download executable code into target, which will perform the desired test and set a CPU register or
memory on exit to a value showing the result of the test. This option is often preferred because there
are virtually no limits to test examples a user can create.

1.2.3 High productivity with the Multi Core feature

With the “Multi Core” feature users can increase productivity by working on upto four targets simultaneously
using a single PEEDI. The targets must be chained using a multi-core adapter (Figure 5) available from
Ronetix.

PEEDI User’s Manual 11 www.ronetix.at

http://www.ronetix.at

Introduction

Figure 5:

Target O Target 1 Target 2 Target 3

PEEDI User’s Manual 12 www.ronetix.at

http://www.ronetix.at

Installation

2 Installation

This chapter will explain how to connect PEEDI to the target and how to configure all the tools necessary for
development.

Two major steps must be followed in order to set up a working PEEDI:

- Connect all required cables, this includes a power cord, target cable and if necessary an Ethernet cable,
which will provide connection to a host computer or file server.
This is explained in subsection 2.1 Hardware installation.

- Install and configure insight/gdb debugger.
This is explained in subsection 2.2 Software installation.

2.1 Hardware installation

Figure 6: Front panel and side connectors

MMC/SD JTAG Target
card slot connector
PWR TPW SELECT * TARGET
O ‘ . E ‘ o o 0 Iﬁ. o 0o 00
oo L @
ETH STAT START
Figure 7: Rear panel connectors
Power Ethernet
RS232 port connector port

!

!

I

1

v

©

5V/1A

RST

Y

T

Ethernet

2.1.1

Connection instructions

To connect the PEEDI interface unit to your host and to the target hardware:

1. Connect the host computer to an Ethernet network or directly to the PEEDI as required:

A. Direct host connection

PEEDI User’s Manual

13

www.ronetix.at

http://www.ronetix.at

Installation

Figure 8:
Crossover cable

Host
PEEDI
B. LAN Connection
Figure 9:
Host PEED!
Hub/Switch
TN Patch cable
Patch cable

i

S

2. Connect the PEEDI interface unit to the target hardware, using the supplied JTAG adapter and cable.
The JTAG adapter must be on the PEEDI side of the JTAG cable. If your target JTAG port pinout is not
standard, you may need to make your own target cable considering the PEEDI JTAG connector pinout.
Refer to subsection 4.1 JTAG Target connector signals for the PEEDI JTAG connector pinout.

Figure 10:
Host PEEDI Target
Crossover cable JTAG cable
[
N

3. Power up the target hardware.

4. Connect the external power supply to the PEEDI and apply power.

5. When PEEDI boots, if you have a terminal connected to the RS232 port of PEEDI you will see various
status messages.

2.2 Software installation

See 'Cross development with GNU toolchain and Eclipse’:
http://www.ronetix.at/software.html

PEEDI User’s Manual 14 www.ronetix.at

http://www.ronetix.at/software.html
http://www.ronetix.at

Using PEEDI

3 Using PEEDI

This chapter will explain PEEDI’s operating modes, PEEDI’s interface and the basic steps of configuring the
software tools for working with PEEDI.

To start using PEEDI you need to:

- configure network settings

- make target configuration file

3.1 PEEDI interface

Figure 11:
2 6 8
1
PWR TPW ‘ SELECT TARGET
O . . H ‘ R Iﬁ. R O
oe L @
/ ETH STAT k k START k
9
3 4 5 7

Figure 12:

10 11 12 13

| <4 ¥ <
Ol lol. 0]o ® () _ O

RS232 5V/1A RST Ethernet

PEEDI User’s Manual 15 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Power LED

Target power LED

Ethernet connect/activity LED
Target connect/activity LED
Script number/status LED display
Next script button

Start script button

Target connector

MMC/SD card slot

RS232 port

Power supply

0 N o OBk~ WD =

_ a a ©
N = O

Reset button

—_
w

Ethernet port

3.2 Setup with RedBoot

RedBoot is a bootstrap loader, which during normal boot-up is used to load and launch PEEDI’s executable
image. RedBoot is also used to update PEEDI’s firmware and to configure network settings, which are later
used by PEEDI. RedBoot has some useful testing facilities like ping and memtest.

3.2.1 RedBoot Configuration

RedBoot and PEEDI share the same network settings. To set the network you need to connect a simple
terminal application set to 115200, 8, N, 1 (for example HyperTerminal) to the PEEDI's RS232 port using a
serial straight-through cable with DBO9M (male) and DB9F (female) connectors on each end. Next step is to
restart PEEDI by pressing the RESET button while holding both front panel buttons in. This will tell RedBoot
not to load and launch the PEEDI executable if available, but to wait for connection on RS232 or Ethernet.
While rebooting RedBoot should output some diagnostic information on the serial port which you should see.
When RedBoot is ready to accept commands, it will show the command line prompt ’'RedBoot>". Now you
can use the fconfig command to set and save to FLASH all the parameters. When asked for different
parameters please enter the following:

WARNING:

If PEEDI is set to get its network settings from a DHCP server and if the Ethernet cable
A is unplugged or there is no DHCP server on the Ethernet, it may take some time for

PEEDI to boot. To avoid this, make sure PEEDI can reach a DHCP server.

Use DHCP for network configuration: yes /[no] [ENTER]

Gateway IP address: X.X.X.X

Local IP address: X.X.X.X

Local IP address mask: X.X.X.X

Default server IP address, used by RedBoot and PEEDI: X.X.X.X

Note:
0 Instead of X’s enter IP address digits

Next you will be asked for the path of the configuration file:

PEEDI User’s Manual 16 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Target config file path:
Accepted paths for the different protocols are:

tftp://server/sub_directory/filename.cfg
ftp://user:password@server/sub_directory/filename.cfqg
http://server/sub_directory/filename.cfqg
card://sub_directory/filename.cfg

Note:
0 A server is indicated by its IP address.

Now you may enter DNS server used by RedBoot to resolve hostnames.
DNS server IP address:

If left blank and PEEDI is set to get the network configuration from DHCP server, the DNS server IP will also
be taken from the DHCP.

Next you will be prompted for the RedBoot telnet port:
RedBoot telnet port: 23
Finally you may enter the update command default file path:

Update filepath:
<1> - http://www.ronetix.at/download/firmware/fw_peedi_revA_last.bin
<2> - tftp://192.168.3.1/fw_peedi_rev.A_last.bin
<custom path>

Path: 1

If you have changed some of the parameters you will be ask to save them at the end. If you confirm to save
them they will be take effect after the next start.

3.2.2 Firmware update procedure

First of all you need to reset PEEDI by pressing the RESET button on the back while holding both front panel
buttons in. This will tell RedBoot not to load and launch the PEEDI executable, but to wait for connection on
RS232 or Ethernet.

Entering the RedBoot command line prompt can be done using two different ways: via RS232 port using serial
straight-through cable and a simple terminal application set to 115200, 8, N, 1 or if the network is configured
you can connect using telnet application.

Once in the RedBoot’s command line prompt (verify by pressing ENTER, RedBoot’s prompt should appear -
’'RedBoot>’), you can update the firmware the following ways:

Update via RS232

Firmware update via RS232 is supported by Redboot v15.12.3 or newer.
If you want to update PEEDI via RS232 your terminal application must support XMODEM or YMODEM pro-
tocols. Now execute:

PEEDI User’s Manual 17 www.ronetix.at

http://www.ronetix.at

Using PEEDI

RedBoot> update xmodem
or
RedBoot> update ymodem

to tell RedBoot to start listening on RS232 port for incoming packets. Next tell your terminal application to
start downloading the PEEDI firmware.

Update via Ethernet

Now you may use update command to update the PEEDI firmware. You can update using TFTP, HTTP. The
syntax of the update command is:

update [FILEPATH | NUMBER]

The command shown below will attempt to download the firmware using the default filepath entered while
configuring RedBoot using the £config command or the path used when last update command is invoked:

RedBoot> update
If not changed, the default update path points to the last version of the firmware directly on the RONETIX web
site. If update 1 is entered also the last version of the firmware directly from the RONETIX web site will be

downloaded.

The following command will attempt to download the firmware using the HTTP protocol from a directory on
the server (this syntax can be used with TFTP t00):

RedBoot> update http://server/subdir/file.bin

After you enter the command using your specific conditions, if the host is accessible and the file is present
you should see this:

PEEDI User’s Manual 18 www.ronetix.at

http://www.ronetix.at

Using PEEDI

RedBoot> update
load -r -m tftp -b 0x100000 -h 192.168.1.1 fw_peedi_revA last.bin

Raw file loaded 0x00100000-0x002ablbf, assumed entry at 0x00100000

Current Firmware:
Hardware Ver. 5 1.2
Software Ver. : 1.0

New Firmware:
Hardware Ver. 5 1.2
Software Ver. 1.1

Install PEEDI firmware version 1.1 (y/[n])? vy

WARNING: The firmware image you are trying to load
exceeds your update license. Continue update (y/[n])? vy

fis delete peedi
Erase from 0x01840000-0x019f0000: ...ttt i eneeeneeeeennannnn
Erase from 0x019f0000-0x01a00000:
Program from 0x007£0000-0x00800000 at 0x019£0000:
fis create -b 0x100000 -1 Ox1AB1CO —-f 0x1840000 -e 0x600040 -r 0x600000
peedi
Erase from 0x01840000-0x019f0000: ... ittt imeneeeeeeeennannnn
Program from 0x00100000-0x002ablcO0 at 0x01840000:
Erase from 0x019f0000-0x01a00000:
Program from 0x007f0000-0x00800000 at 0x019f0000:
RedBoot>

3.2.3 RedBoot commands used with PEEDI

These commands are used to update, configure, test and run PEEDI:

fconfig

Syntax:
fconfig

Description:
Enter RedBoot and PEEDI configuration parameters

Argument:
None

Example:
fconfig

PEEDI User’s Manual 19 www.ronetix.at

http://www.ronetix.at

Using PEEDI

update
Syntax:
update [FILEPATH | [NUMBER]]
Description:
Update PEEDI firmware. If no argument is provided last used will be
taken. Default first used argument is taken when fconfig command is used.
The update 1 command downloads the latest firmware image.
Argument:
FILEPATH - file path of the file
NUMBER
- fixed path to latest firmware image. Available argument is 1
Example:
update
update http://www.myserver.com/mydir/myfile.bin
update tftp://192.168.1.1/mydir/myfile.bin
update xmodem
update ymodem
update 1
memtest
Syntax:
memtest [-c]
Description:
Test available (not occupied by RedBoot) RAM
Argument:
-C - perform continuous test
Example:
memtest

memtest -c

3.3 Configure PEEDI

3.3.1 Network configuration

RedBoot and PEEDI share the same network settings. To set up the network look in ’'RedBoot Configuration’.

PEEDI User’s Manual 20 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Note:

A new PEEDI is set by the factory to get its network settings from a DHCP server. You
0 can see the PEEDI IP by pressing and holding the green button on the front PEEDI

panel. The IP will be shown on the front panel LED indicator. Or connect to PEEDI on

the RS232 and the IP is shown during boot-up.

3.3.2 Target configuration file

To operate, PEEDI needs to load a target configuration file, which describes the specifics of the given target;
this includes CPU type, FLASH type and metrics, RAM address and size, etc. The target configuration file
includes also some settings of PEEDI itself like license keys, baud rates of the serial port, etc.

The target configuration file can be loaded from TFTP, FTP or HTTP server, MMC/SD card or the internal
EEPROM. All INI files have standard format: sections are closed in square brackets; comments begin with ’;’
character and occupy the rest of the line. The configuration file consists of several mandatory sections and
others, which can be named freely.

Multiple PEEDIs may load single shared target configuration file, but you need to fill in all valid PEEDISs’
licenses purchased.

Section LICENSE

Listed in this section are all the license keys that are acquired, they will unlock specific features of PEEDI.

Example:

[LICENSE]

KEY = ARM7_ARMY9, 1111-2222-3333-4

KEY = UPDATE_29AUG2006, 5555-6666-7777-8

The licenses can be also stored in a separate file:
[LICENSE]
FILE = tftp://192.168.0.1/1licenses.txt

In this case the file “licenses.txt” should contains:
[LICENSE]

KEY = ARM7_ARM9, 1111-2222-3333-4

KEY = UPDATE_29AUG2006, 5555-6666-7777-8

Section DEBUGGER

This section describes the protocol used with the host debugger. One debugger protocol is supported: the
GDB Remote debug protocol.

PEEDI User’s Manual 21 www.ronetix.at

http://www.ronetix.at

Using PEEDI

PROTOCOL

Synopsis
PROTOCOL = gdb_remote

Description
Describes the debugger protocol. If several protocols need to be enabled, they must be

enumerated on the same line, separated by comma.

REMOTE_PORT

Synopsis
REMOTE_PORT = <1024..65535>

Description
TCP port to be used for accepting connections

FLASH FLASHn

Synopsis
FLASH<CORE_INDEX> = <FLASH_SECTION>

Description
This enables GDB load command to program code to FLASH

Example
FLASH = FLASH_NOR - FLASH section to be used for core 0
FLASHO = FLASH_NAND - FLASH section to be used for core 0
FLASHI1 FLASH_NAND - FLASH section to be used for core 1

Section TARGET

This section describes the target’s platform.

PLATFORM
Synopsis
PLATFORM = ARM|ARM11|AVR32|Blackfin|ColdFire|Cortex-A|Cortex-M|Cortex-
M_SWD| JBC_Player|MIPS|MPC5200|MPC5500|MPC8300|MPC8500|QorlQ_P|XScale
Description
Target’s platform
Example
[TARGET]

PLATFORM = ARM

PEEDI User’s Manual 22 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Section PLATFORM_ARM

In this section there are parameters specific to the given ARM cores. Every core must be defined with the
COREnN parameter, where 'n’ is a number; each parameter related to this core must be preceded with the
same CORER prefix. The parameters that must be set are:

Global parameters for all ARM cores

JTAG_CHAIN

Synopsis
JTAG_CHAIN = <IR_LEN>

Description
Length of IRs (Instruction Registers) of the devices on the JTAG chain. All IRs must be

enumerated; the ones not supported by PEEDI must be skipped when defining COREn
parameters (see below). If AUTO X is used first, then PEEDI will try to auto detect the
actual number of TAPs connected in the JTAG chain.

JTAG_CLOCK

Synopsis
JTAG_CLOCK = <INIT>, <NORMAL>
JTAG_CLOCK = ADAPTIVE

Description
JTAG clock before and after initialization in kHz. Max JTAG clock is 33MHz, but 16-20MHz

is recommended. You ca use ADAPTIVE, if the CPU supports adaptive clocking.

JTAG_TDO_DELAY

Synopsis
JTAG_TDO_DELAY =0..35 -thedelayinns.
JTAG_TDO_DELAY = AUTO - PEEDI tests the CPU and sets the optimum TDO delay

Description
Delay the sample of the TDO JTAG line. For best performance different CPUs require

different TDO sample delay. When this parameter is not preset a 5ns value is set by
default.

TRST_TYPE

Synopsis
TRST_TYPE = OPENDRAIN|PUSHPULL

Description
Type of TRST output

PEEDI User’s Manual 23 www.ronetix.at

http://www.ronetix.at

Using PEEDI

RESET_TIME

Synopsis
RESET_TIME = <miliseconds>

Description
If 0 is specified, no reset will be issued, this way PEEDI can be attached to already
initialized and running target, so INIT section could also be missing. If the target executes
code after reset even CORE_STARTUP_MODE=RESET, this means the TAP is not active

during reset, add a second argument time argument, this will tell PEEDI to make a second
reset pulse after which no code will be executed.

WAKEUP_TIME

Synopsis
WAKEUP_TIME = <miliseconds>

Description
Time to delay the JTAG operations after target power up is detected.

TIME_AFTER_RESET

Synopsis
TIME_AFTER_RESET = <miliseconds>

Description
Time to delay the JTAG operations after RESET is released.

WDKICK_TIME

Synopsis
WDKICK_TIME = <miliseconds>

Description
If this parameter is present, PEEDI will periodically kick the TMS470 Analog Watch Dog

timer with the specified time between two kicks.

DBGREQ_OUTPUT

Synopsis
DBGREQ_OUTPUT = HIGH|LOW

Description
Define the state of the JTAG DBGREQ line.

Core specific parameters

PEEDI User’s Manual 24 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn
Synopsis
COREnN = ARM7TDMIJARM9TDMI|ARM920T|ARM940T|ARM926E|ARM946E,
[<tap_num>] Core declaration.
Description

Type of CORE and a TAP number separated by comma

CORENn_STARTUP_MODE

Synopsys
PEEDI behavior when starting the target.
Description
RESET Force the target to debug mode immediately out of reset. No code is
executed after reset. (default mode)
After power-up PEEDI waits XX ms (this gives time to the target to
STOP, XX execute its own initialization code) and target is placed in debug mode
(halted).
RUN After reset, the target executes code until stopped by the Telnethalt
command.
COREN_INIT
Synopsis

COREN_INIT = <init_section>

Description
Section to be executed in order to initialize the target.

CORENn_FLASHmM

Synopsis
COREN_FLASHm = <flash_section>

Description
This parameter points a section which contains the target FLASH description. If multiple

FLASH chips/configurations are present on the target each chip/configurations must be
described in different section, where 'm’ should start from 0 (max 15) and increment with
each new section. If single FLASH chip/configuration is used the 'm’ integer number may
be skipped. When working with the programmer the first FLASH is selected as current
by default. To work on another FLASH, use the £1lash set command to select it. The
multiple FLASH support, could also be used to describe different profiles for the same
FLASH, for example with different program method type or different image file specified.
This way you can easy switch to the desired profile using the £1lash set command

PEEDI User’s Manual 25 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREN_ENDIAN

Synopsis
COREN_ENDIAN = LITTLE|BIG

Description
Core endianness

COREn_VECTOR_CATCH_MASK

Synopsys
COREN_VECTOR_CATCH_MASK = <mask>

Description
Specifies which interrupts/exceptions to be trapped i.e. break if an interrupt or exception

occurs. ARM9 and XSCALE cores only.

Catch vector mask bit meaning:
7 6 5 4 3 2 1 0
FIQ IRQ Res D_Abory P_Abort SWI Undef | Reset

COREn_BREAKMODE

Synopsis
COREn_BREAKMODE = SOFT|HARD
COREn_BREAKMODE = HARD, start_addr, end_addr

Description
Default breakpoint mode. Use to force the usage of hardware break points, when debug-

ging in FLASH, or when working with GDB v5.3, where the hbreak command does not
work. If 'start_addr’ and ’end_addr’ are given, then the hardware breakpoints are used
for this address range.

Note:
The ARM EmbeddedICE logic has hardware resources for two break conditions, never
mind break or watch points. The use of software breakpoints allows unlimited number
of them, but this still requires the hardware resource of one break/watch point. Soft-
ware breakpoints are possible only if the code is executed from RAM since the desired
instruction to be hit is exchanged with special pattern. In brief, you can use up to
0 two watchpoints or hardware breakpoints; or one watchpoint or hardware breakpoint,
and unlimited number of software breakpoints. This means that you may use only one
watch point and still debug normally in RAM. But if your code is in ROM/FLASH you
must use hardware breakpoints, so if you have set one break or watch point you can
still do 'single step’, 'step in’ and ‘step out’, but if you have set two watch or break
points, only ‘continue’ is possible after the target breaks, since the debugger needs a
temporary break point to achieve the ‘step’ functionality.

PEEDI User’s Manual 26 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn_BREAK_PATTERN

Synopsis
COREN_BREAK_PATTERN = <value>

Description
Software breakpoint pattern.

CORENn_WORKSPACE

Synopsis
COREn_WORKSPACE = <address>, <size>

Description
Base and length in bytes of a region in RAM, used for agent, which allows much faster

programming.

COREN_DATASPACE

Synopsis
COREN_DATASPACE = <address>, <size>

Description
If this parameter is present, PEEDI will use the workspace for storing only the agent code

and the dataspace for the agent data. This is useful when using internal RAM for agent
programming, where the internal RAM is code or data only, for example Blackfin CPUs

CORENn_DCC_PORT

Synopsis
COREN_DCC_PORT = 1024..65535, [0-7|32]
Description
TCP port, the target’s DCC channel to be routed to.
Example
COREn_DCC_PORT = 2001 - route 8-bit DCC channel to TCP port
2001
COREn_DCC_PORT = 2001, 32 - route 32-bit DCC channel to TCP
port 2001

COREn_DCC_PORT = 2001, 4 - route 4 virtual serial ports to
TCP ports 2001-2004

COREn_PATH

Synopsis
COREN_PATH = <path>

Description
This parameter defines the default path to be used if only a file name (without the full

path) is provided to a PEEDI command.

PEEDI User’s Manual 27 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREnN_FILE

Synopsis
COREN_FILE = FILE, [FORMAT], [ADDRESS]

Description
This parameter defines the default memory (multi) load command’s arguments.

This parameter may have two or three arguments. The first argument is the file to be
programmed.

The second argument is the file type - BIN, SREC, IHEX or ELF.

The third argument is mandatory for binary files and optional for all other types of files - it
is the address where the file should be loaded.

COREn_LOCKOUT_RECOVERY

Synopsis
COREN_LOCKOUT_RECOVERY = LM3SIKINETIS
COREN_LOCKOUT_RECOQVERY = YES|NO
COREN_LOCKOUT_RECOVERY = <value>

Description
If this parameter is present, PEEDI automatically executes a 'JTAG Lockout Recovery’

procedure during reset processing if the MAC7100, STR9, LM3S, KINETIS or AVR32
flash is secured.

LM3S/KINETIS for Cortex-M devices

YES/NO for STR9 and AVR32 devices

For MAC7100 devices 7-bit value for the CFMCLKD register used during the 'JTAG Lock-
out Recovery’. Calculate this parameter based on the reset system clock (PLL disabled).
For example:

19 - CLKD for 8MHz system clock

9 - CLKD for 4MHz system clock

COREN_OS

Synopsis
COREnN_OS = <section>

Description
This parameter points to a section which contains parameters that defines the target

Operating System. This guides PEEDI to scan the target OS tasks and pass the list to
the host debugger.

For example of this section see the example configuration files in the appendix of this document.

PEEDI User’s Manual 28 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Section PLATFORM_ARM11

This section describes the ARM11 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, and
COREN_LOCKOUT_RECOVERY). About the CORE parameter:

COREN

Synopsis
COREnN = ARM1136/ARM1156|ARM1176, [tap_num]

Description
Type of CORE (ARM1136, ARM1156 or ARM1176) and a TAP number separated by
comma. The cores differ by the cp15 registers.

COREn_USE_FAST_DOWNLOAD

Synopsis
CORENn_USE_FAST_DOWNLOAD = YES|NO

Description
If YES is specified, PEEDI will send data to the target without checking if the target is
ready with the previous data, assuming that the target writes the received data faster
than PEEDI is sending it. This type of transfer is faster bun less reliable. Use it only if you
are sure that the target is fast enough i.e. the CPU is running on high frequency.

CORENn_DCC_PORT

Synopsis
COREN_DCC_PORT = 1024..65535, [vports_num]

Description
TCP port, the target's DCC channel to be routed to. In this case the lowest eight bits of

the 32 bit DCC word will be transfered to/from single TCP port, forming 8-bit/character
channel. If a virtual serial port number (up to 8) is provided after the TCP port, PEEDI will
emulate up to 8 virtual serial ports routed to 8 consecutive TCP ports, starting from the
given one.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_Cortex-M & Section PLATFORM_Cortex-M_SWD

These sections describe the Cortex-M cores connected to PEEDI via JTAG or SWD (Serial Wire Debug).It has

all the parameters described in the PLATFORM_ARM section (except the COREn_VECTOR_CATCH_MASK,
COREn_BREAK_PATTERN and COREn_DCC_PORT. The PLATFORM_Cortex-M_SWD section has no JTAG_CHAIN
parameter, and its clock parameter is named SWD_CLOCK and has the same format as the JTAG_CLOCK
parameter. About the CORE parameter:

PEEDI User’s Manual 29 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn
Synopsis
COREnN = Cortex-M
Description
The detection of Cortex-M variant is done automatically. value.
Example

;jConfiguration file for ATSAMD20
COREO = Cortex-M, 0, 0xBC11477

PERIODIC_TASK

Synopsis
PERIODIC_TASK = <script_name>, <time_in_miliseconds>

PERIODIC_TASK = WD_KICK, 1000

Description
Execute the given script on specified time interval.

COREn_SWO

Synopsis
COREN_SWO = <stim_chan>, <tcp_port>
COREN_SWO = DWT, <tcp_port>

Description
This parameter is allowed only for the PLATFORM_Cortex-M_SWD section.

It tells PEEDI to open a TCP port and listen for incoming telnet connections. PEEDI
checks for new incoming telnet connection only when the target CPU is halted.

If a telnet session is opened to that TCP port PEEDI will forward all stimulus data for the
given stimulus channel. In order for the CPU to transmit stimulus messages, you need
to enable this functionality. This can be done by the target application or by PEEDI using
the target INIT script - see ST STM32 family .

If DWT is specified instead of stimulus port, PEEDI will forward all enabled DWT mes-
sages to the TCP port - PC samples, interrupt entry/exit, timestamps, etc.

PEEDI User’s Manual 30 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn_PROFILING

Synopsis
COREN_PROFILING = <start_addr>, <length>, <virtual_addr>

Description
This parameter is allowed only for the PLATFORM_Cortex-M_SWD section.

It tells PEEDI to maintain PC counter array virtually mapped at the target's mem-
ory space. When PEEDI receive a PC sample message it will increment the corre-
sponding PC hit counter. After the target is halted, one may use memory readlé6
<virtual_address> command to see the counters and thus see where CPU spent
too much time. This feature can be use by debuggers too.

In order for the CPU to transmit PC sample messages, you need to enable this function-
ality. This can be done by the target application or by PEEDI using the target INIT script
-see ST STM32 family .

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_Cortex-A

This section describes the Cortex-A cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_VECTOR_CATCH_MASK, COREn_BREAK_PATTERN, COREn_DCC_POlI
and COREn_LOCKOUT_RECOVERY). About the CORE parameter:

COREN

Synopsis
COREnN = Cortex-A|Cortex-A_SMP|iMX50|iMX51]iMX53|
AMB335x|OMAP3530|C6_INTEGRA|OMAP4430A/A_SMP/B|IMX6A/A_SMP/B/C/D|
UB500|CYCLONE_VA/A_SMP/B|DAVINCI|LS1000A/A_SMP/B|BCM2837A/B/C/D|HI6220A,

[tap_num]
Description

Core declaration. If XXX_SMP is specified, PEEDI will start/stop all cores synchronously
to enable SMP debugging.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_XSCALE

This section describes the XScale cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, and COREn_LOCKOUT_RECOVERY)
including some additional parameters:

PEEDI User’s Manual 31 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREN

Synopsis
COREnN = XScale|PXA320, [tap_num]

Description
Type of CORE and a TAP number separated by comma

COREn_USE_FAST_DOWNLOAD

Synopsis
CORENn_USE_FAST_DOWNLOAD = YES|NO

Description
If YES is specified, PEEDI will send data to the target without checking if the target is

ready with the previous data, assuming that the target writes the received data faster
than PEEDI is sending it. This type of transfer is faster but less reliable. Use it only if you
are sure that the target is fast enough i.e. the CPU is running on high frequency.

COREn_DEBUG_HANDLER_ADDR

Synopsys
CORENn_DEBUG_HANDLER_ADDR = <addr>

Description
The address where the XScale debug handler should be mapped at.

Choosing address has three limitations:

1. Due to the limitation of the ARM branch instruction the address must be within these
ranges: 0x00000000 - 0x01FFFCO00 or 0xXFE000000 - OxFFFFFCO00.

2. Must be aligned to a 1KB (0x400) boundary.

3. Must not overlap user application code.

PEEDI User’s Manual 32 www.ronetix.at

http://www.ronetix.at

Using PEEDI
COREn_VECTOR/RELOCATED_UNDEF/SWI/PABORT/DABORT/RES/IRQ/FIQ

Synopsis
CORENn_VECTOR_UNDEF = AUTO|<instr_code>
COREN_VECTOR_SWI = AUTO|<instr_code>
CORENn_VECTOR_PABORT = AUTO|<instr_code>
CORENn_VECTOR_DABORT = AUTO|<instr_code>
COREN_VECTOR_RES = AUTOI<instr_code>
COREN_VECTOR_IRQ = AUTO|<instr_code>
COREN_VECTOR_FIQ = AUTO|<instr_code>
CORENn_RELOCATED UNDEF = AUTO|<instr_code>
COREN_RELOCATED_SWI = AUTO|<instr_code>
COREN_RELOCATED_PABORT = AUTO|<instr_code>
COREN_RELOCATED_DABORT = AUTO|<instr_code>
COREn_RELOCATED_RES = AUTO|<instr_code>
CORENn_RELOCATED_IRQ = AUTO|<instr_code>
CORENn_RELOCATED_FIQ = AUTO|<instr_code>

Description
Because of the XScale debugging specifics, PEEDI must be aware of the exception vec-

tors. Each of these parameters may have value of AUTO or an exact value which repre-
sents a hex encoded ARM instruction. In case of AUTO is specified, PEEDI will read the
original vector value from the target memory on each debug event (halt, step, go, etc.).
Or you can put a constant value if you exactly know the vector’s instruction, for example
0xE59FF018 stands for "Idr pc, [pc, #18]" instruction.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_MPC5200

This section describes the MPC5200 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
COREN_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

COREN

Synopsis
COREnN = MPC5200|MPC8200, [tap_num]

Description
Type of CORE and a TAP number separated by comma

COREn_BOOT_ADDR

Synopsis
COREN_BOOT_ADDR = 0x00000100|0xFFF00100

Description
Normally the boot address for PowerPC is 0xFFF00100 or 0x00000100 depending on the

Reset Configuration Word (RCW). PEEDI sets a hardware breakpoint at this address to
halt the core immediately out of reset.

PEEDI User’s Manual 33 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn_MEMDELAY

Synopsis
CORENn_MEMDELAY = <NUMBER_OF_CLOCKS>

Description
Additional number of CPU clocks for a memory access.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_MPC5500

This section describes the MPC55XX cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
CORENn_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

COREN

Synopsis
COREN = MPC5xxx|MPC5xxx_VLE|MPC5xxx_SPE, [tap_num]

Description
Type of CORE and a TAP number separated by comma

COREn_NEXUS3_ACCESS

Synopsis
COREN_NEXUS3_ACCESS = START_ADDRESS, LENGTH

Description
This parameter accepts NO or memory region (start address and length in bytes). If a

memory region is supplied (usually this is the RAM of the target), PEEDI will access target
memory region using the nexus3 module. This method is about three times faster but it
uses physical addresses i.e. bypasses the MMU. You can properly use this method if the
MMU is set to be transparent i.e. virtual addresses are equal to physical ones.

MPC5XXX_AUX_TAP_CMD
COREn_AUX_TAP_CMD

Synopsis
MPC5XXX_AUX_TAP_CMD = <TAP_IR_LEN>,<TAP_CMD>
CORENn_AUX_TAP_CMD = <TAP_IR_LEN>,<TAP_CMD>

Description
Set core aux tap select command, if different from the default 0x11 with IR length of 5.

For example of this section see the example configuration files in the appendix of this document.

PEEDI User’s Manual 34 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Section PLATFORM_MPC8300

This section describes the MPC83XX cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
COREN_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

COREn
Synopsis
COREN = MPC5121|MPC8306|MPC8308|MPC8313|MPC8315|MPC8321|MPC8323|MPC8343|
MPC8349|MPC8360|MPC8378, [tap_num]
Description

Type of CORE and a TAP number separated by comma

COREn_BOOT_ADDR

Synopsis
COREN_BOOT_ADDR = 0x00000100|0xFFF00100

Description
Normally the boot address for PowerPC is 0xFFF00100 or 0x00000100 depending on the
Reset Configuration Word (RCW). PEEDI sets a hardware breakpoint at this address to
halt the core immediately out of reset.

COREn_RCW

Synopsis
COREN_RCW = <rcw_high>, <rcw_low>

Description
When this parameter is present, PEEDI overrides the Reset Configuration Words with the
values provided.

COREn_MMU_PTBASE

Synopsis
COREn_MMU_PTBASE = <addr>

Description
Address of the of pointer to the two page pointers array This parameter defines the phys-
ical memory address, where PEEDI looks for the virtual address of the array with the two
page table pointers. If this configuration parameter is present and the MMU translation is
enabled, if PEEDI fails to translate the effective address to a physical one using BAT trans-
lation, it tries a page translation. For more information see CPU specific considerations

For example of this section see the example configuration files in the appendix of this document.

PEEDI User’s Manual 35 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Section PLATFORM_MPC8500

This section describes the MPC8500 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
COREN_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

COREN

Synopsis
COREn = MPC8536/MPC8540|MPC8572A/B|P1010|P1011|P1020A/B|P2020A/B,

<tap_num>

Description
Type of CORE and a TAP number separated by comma

COREn_MMU_TRANS

Synopsis
COREn_MMU_TRANS = <addr>

Description
This parameter sets the default MMU translation address. For example the default Linux

kernel address is 0xC0000000.

COREn_MMU_PTBASE

Synopsis
COREn_MMU_PTBASE = <addr>

Description
Address of the of pointer to the two page pointers array This parameter defines the phys-

ical memory address, where PEEDI looks for the virtual address of the array with the two
page table pointers. If this configuration parameter is present and the MMU translation is
enabled, if PEEDI fails to translate the effective address to a physical one using BAT trans-
lation, it tries a page translation. For more information see CPU specific considerations

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_QorlQ_P

This section describes the QorlQ P3/4/5 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
COREN_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

PEEDI User’s Manual 36 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREN

Synopsis
COREnN = P4080A/B/C/D/E/F/G/H|T1040A/B/C/D,<tap_num>

Description
Type of CORE and a TAP number separated by comma

CORENn_REGLIST

Synopsis
COREN_REGLIST = 32BIT|64BIT

Description
This parameter sets the type of the register frame sent to GDB, when debugging 64-bit
e5500 cores - 32 or 64 bit registers.

COREn_MMU_TRANS

Synopsis
CORENn_MMU_TRANS = <addr>

Description
This parameter sets the default MMU translation address. For example the default Linux
kernel address is 0xC0000000.

COREn_MMU_PTBASE

Synopsis
CORENn_MMU_PTBASE = <addr>

Description
Address of the of pointer to the two page pointers array This parameter defines the phys-
ical memory address, where PEEDI looks for the virtual address of the array with the two
page table pointers. If this configuration parameter is present and the MMU translation is
enabled, if PEEDI fails to translate the effective address to a physical one using BAT trans-
lation, it tries a page translation. For more information see CPU specific considerations

COREn_PMEM_BASE

Synopsis
CORENn_PMEM_BASE = <addr>

Description
This parameter is used to define the base address of the physical memory used by the
kernel. It must be used when the kernel is hosted by system hypervisor. If this parameter
is ommited, default base of 0x00000000 is assumed.

For example of this section see the example configuration files in the appendix of this document.

PEEDI User’s Manual 37 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Section PLATFORM_PPC400

This section describes the PPC400 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT,
COREN_LOCKOUT_RECOVERY and COREn_VECTOR_CATCH_MASK) including some additional param-
eters:

COREN

Synopsis
COREN = PPC405|PPC440|PPC464, <tap_num>

Description
Type of CORE and a TAP number separated by comma

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_COLDFIRE

This section describes the ColdFire cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the JTAG_CHAIN, JTAG_CLOCK, TRST_TYPE, CORE_ENDIAN,
CORE_BREAK_PATTERN, CORE_DCC_PORT, CORE_LOCKOUT_RECOVERY andi
CORE_VECTOR_CATCH_MASK) including some additional parameters:

BDM_CLOCK

Synopsis
BDM_CLOCK = <INIT>, <NORMAL>
BDM_CLOCK = ADAPTIVE_n

Description
BDM clock before and after initialization. MAX BDM clock is 33MHz. See your ColdFire
CPU user’s manual for correct BDM clock. Use ADAPTIVE_n to set the BDM clock to
PSTCLK/n

CORE

Synopsis
CORE = MCFXXXX

Description
Type of CORE - MCF5206, MCF5207, MCF5208, MCF5211, MCF5212, MCF5213,

MCF5214, MCF5216, MCF521x0, MCF5221x, MCF5222x, MCF5223x, MCF5225x,
MCF5227x, MCF523x, MCF5249, MCF525x, MCF5270, MCF5271, MCF5272,
MCF5274, MCF5275, MCF528x, MCF5307, MCF532x, MCF537x, MCF5407,
MCF5445x, MCF547x, MCF548x

PEEDI User’s Manual 38 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CORE_MEMMAP

Synopsis
CORE_MEMMAP = <start_addr>, <end_addr>

Description
Defines a valid memory region. Up to 32 regions can be defined in the target configuration
file.

When even one region is defined, PEEDI begins to check every memory access operation
if it falls into a defined memory region. If the memory operation is out of the defined
regions, PEEDI interrupts the operation and issues an error.

This is made so, because when an access is made to an invalid memory address via the
BDM, the ColdFire CPU refuses to respond to any further memory operations until reset.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_BLACKFIN

This paragraph Section PLATFORM_BLACKFIN This section describes the Blackfin cores connected to
PEEDI. It has all the parameters described in the PLATFORM_ARM section (except the RESET_TIME,
COREN_BREAK_PATTERN, COREn_DCC_PORT, COREn_LOCKOUT_RECOVERY and
COREN_VECTOR_CATCH_MASK) including some additional parameters:

COREN

Synopsis
COREN = BFXXX, [tap_num]

Description
Type of CORE (BF50X, BF51X, BF522, BF525, BF527, BF531, BF532, BF533, BF534,

BF535, BF536, BF537, BF538, BF539, BF542, BF544, BF548, BF549, BF561A, BF561B,
BF59X, BF60X_A, BF60X_B, BF70X) and a TAP number separated by comma

The following parameters are not mandatory. They are used to define a 'virtual’ memory region corresponding
to an external memory mapped device that is bigger than the visible external asynchronous memory space.
The higher address lines of the device that are not connected to the CPU address buss must be driven by
the GPIO pins. This way you can use all the PEEDI CLI commands (f£lash program, memory read,
etc.) on the defined virtual region as the whole device is directly visible in the memory space of the target.
Actually PEEDI emulates this behavior by accessing physically the device only through the memory window
provided by the CPU external address space and driving the higher address lines of the device depending on
the address that is requested to be accessed.

This feature of PEEDI helps programming FLASH chips which are bigger than the visible external asyn-
chronous memory space.

PEEDI User’s Manual 39 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn_VMEM

Synopsis
COREn_VMEM = <address>, <length>

Description
Defines a memory region, which is virtually mapped to large external memory mapped

device.

COREn_VMEM_WINDOW

Synopsis
COREn_VMEM_WINDOW = <address>, <length>

Description
Defines a memory window to physically access the external memory mapped device, t.e.

the memory region where the device is mapped into the CPU memory space.

COREn_VMEM_PINS

Synopsis
CORENn_VMEM_PINS = P<A..J><0..15>

Description
Pxy, where 'x’ is the GPIO port A..J and 'y’ is the bit number 0..15. List of the GPIO pins

connected to the higher external device address lines that are not connected to the CPU
address bus, starting from lowest to highest, separated by comma. The GPIO pins must

belong to the same GPIO port.

Imagining that we want to virtually map on address 0x30000000, an 8MB FLASH that is connected to the first
chip select of the CPU, so physically accessible at 0x20000000 via 1MB window and its A19, A20 and A21
pins are connected to PF4, PF5 and PF8 CPU pins, the configuration should look like this:

; The 8MB FLASH is virtually mapped at 0x30000000
COREO_VMEM = 0x30000000, 0x800000

; It is physically visible through a 1MB window at 0x20000000
COREQ_VMEM_WINDOW = 0x20000000, 0x100000

; PF4, PF5 and PF8 are used to drive Al19, A20 and A21 of the FLASH

COREO_VMEM_ADDRESS_PINS = PF4, PF5, PF8

Now we can erase, program and verify the whole 8MB of FLASH at address 0x30000000 using any PEEDI
flash command. Keep in mind that when defining [FLASH] section in the target configuration file, you need
to specify the virtual address of the FLASH for the BASE_ADDR parameter.

PEEDI User’s Manual 40 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CORE_MEMMAP

Synopsis
CORE_MEMMAP = <start_addr>, <end_addr>

Description
Defines a valid memory region. Up to 32 regions can be defined in the target configuration
file.
When even one region is defined, PEEDI begins to check every memory access operation
if it falls into a defined memory region. If the memory operation is out of the defined
regions, PEEDI interrupts the operation and issues an error.
This is made so, because when an access is made to an invalid memory address via

the JTAG, the Blackfin CPU may stop to respond to any further memory operations until
reset.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_MIPS

This section describes the MIPS cores connected to PEEDI. It has all the parameters described in the PLAT-
FORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT and
COREN_LOCKOUT_RECOVERY). About the CORE parameter:

COREN

Synopsis
COREnN = MIPS32_24K|MIPS32_4K|MIPS32_M4K|PIC32|RTL8100|MIPS64, [tap_num]

Description

Type of CORE and a TAP number separated by comma.

For example of this section see the example configuration files in the appendix of this document.

Section PLATFORM_AVR32

This section describes the AVR32 cores connected to PEEDI. It has all the parameters described in the
PLATFORM_ARM section (except the COREn_BREAK_PATTERN, COREn_DCC_PORT and
CORENn_VECTOR_CATCH_MASK). About the CORE parameter:

COREN

Synopsis
COREnN = AVR32AP7|AVR32UC3, [tap_num]

Description
Type of CORE and a TAP number separated by comma.

PEEDI User’s Manual 41 www.ronetix.at

http://www.ronetix.at

Using PEEDI

COREn_BLOCK_ACCESS

Synopsis
COREN_BLOCK_ACCESS = START_ADDRESS, LENGTH

Description
This parameter accepts NO or memory region (start address and length in bytes). If a
memory region is supplied (usually this is the RAM of the target), PEEDI will access target
memory region using the MEMORY_WORD_ACCESS TAP command.

For example of this section see the example configuration files in the appendix of this document.

Section INIT

This is the section specified by COREN_INIT parameter. It includes commands, which are executed once
after every target power detection and target reset. The purpose of this section is to initialize the target (map
the memory, init peripherals and so on). Most of these are memory write commands.

Example:

[INIT_EB55800]

memory write OxFFFF4020 0x004F0002 ; enable main clock

wait 100 ; wait to stabilize

memory write OxFFFF4020 0x004F4002 ; switch to main clock

memory write OxFFFF4020 0x3F006802 ; enable PLL

wait 100 ; wait to lock

memory write OxFFFF4020 0x3F008722 ; switch to PLL, pres=4, mul=8

memory write OxFFE00020 0x00000001 ; cancel reset remapping
memory write OxXFFEO0000 O0x010020A5 ; csr0 - Flash at 0x1000000, 2 Ws
memory write OxFFE00004 0x02003029 ; csrl - RAM at 0x2000000, 2 Ws

Sometimes it is impossible to initialize the target only by using the commands in the [INIT] section of the
target configuration file. In cases like this to perform the initialization an executable image can be loaded
and executed in the target using the memory load and go commands. Before loading the image, the RAM
where it will be loaded must be initialized. Follow these steps to make a successful initialization:

Note:

0 This is working [INIT] section for AT91M55800A CPU. In this case the last instruction
of the executable must be SWI, informing that job has finished.

PEEDI User’s Manual 42 www.ronetix.at

http://www.ronetix.at

Using PEEDI

[INIT _EB55800]

; First init chip selects
memory write OxFFE00020 0x000
memory write OxFFEO0000 0x010
memory write OxFFE00004 0x020
memory write OxFFFFF124 OxFFF

; Then load and start the exe
; skipping the interrupt tabl
memory load tftp://192.168.1.

set cpsr 0xD3 g
set sp 0x200 8
breakpoint add 0x8 2
go 7
wait 50 8
halt 8
break del 1 8
address

Section FLASH

This section tells PEEDI what type are the

NOR FLASH programming

These are all possible variants of connecti

or external:

- One 8-bit chip, form
- Two 8-bit chips, form
- Four 8-bit chips, form
- One 16-bit chip, form
- Two 16-bit chips, form
- One 32-bit chip, form

When describing external NOR FLASH co

00001 ; cancel reset remapping
020A5 ; csr0 - Flash at 0x1000000, 2 Ws
03029 ; csrl - RAM at 0x2000000, 2 Ws
FFFFF ; disable all interrupts

cutable image,

e

1/init.bin bin 0x20

set supervisor mode, interrupts disabled

set stack pointer, if program uses stack

set break at software interruptvector address
start executable

wait to complete

halt if not completed

del break at software interrupt vector

onboard FLASH memory chips and what their configuration is.

ng NOR FLASH chips:

ing 8-bit architecture

ing 16-bit architecture
ing 32-bit architecture
ing 16-bit architecture
ing 32-bit architecture
ing 32-bit architecture

nfiguration the following parameters must be specified:

CHIP

CHECK_ID

ACCESS_METHOD

CHIP

WIDTH

CHIP

_COUNT

BASE_ADDR

FILE

AUTO_LOCK

AUTO_ERASE

Considering your configuration you must specify CHIP_COUNT, and CHIP_WIDTH parameters, CHIP_WIDTH

is the width of a single chip, so system wid

th will be CHIP_COUNT multiplied by CHIP_WIDTH.

PEEDI User’s Manual

43 www.ronetix.at

http://www.ronetix.at

Using PEEDI

If CHIP is set to CFI_FLASH - CHECK_ID, CHIP_WIDTH and CHIP_COUNT parameters may be omitted and
PEEDI will auto detect them.

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/mv78100.cfg

12C Programming

PEEDI supports 12C EEPROM programming, for any CPU that SDA and SCL signals are connected to GPIOs
and can be driven using memory operations. Along with the standard flash commands, you can use £lash
this write command to write up to fourteen bytes to the EEPROM like this:

flash this write 0x24 0x36 0x48 - write two bytes at address 0x24

The FLASH section for 12C EEPROM programming should include the following paremeters:

CHIP = [2C_EEPROM
CPU = GENERIC_I2C
CHIP_SIZE
I2C_ADDR
|2C_DELAY
SDA_SET

SDA_CLR

SDA_IN

SDA_OUT
SDA_READ
SCL_SET

SCL_CLR

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/armll/s3c6410.cfg

SPI FLASH programming

The parameters for SPI NOR FLASH or Atmel DataFlash family, connected to an Atmel AT91 CPU are:

CHIP = SPI25_FLASH or AT45_DATAFLASH
CPU

SPI_DIV

nSPI

nCS
SPI_SPCK
SPI_MISO
SPI_MOSI
SPI_CS

FILE
SPI_MODE
AUTO_ERASE

PEEDI User’s Manual 44 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/mv78100.cfg
http://download.ronetix.info/peedi/cfg_examples/arm11/s3c6410.cfg
http://www.ronetix.at

Using PEEDI

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_pm9263.cfg

For SPI memory connected to a Blackfin CPU the parameters are:

CHIP = SPI125_FLASH or AT45_DATAFLASH
CPU = BF5XX

SPI_DIV

SPI_CS

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/blackfin/bf532.cfg

For SPI memory connected to a NXP LPC2000 CPU these are:

CHIP = SPI125_FLASH or AT45_DATAFLASH
CPU = LPC2XXX

SPI_DIV

CS_ASSERT

CS_RELEASE

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/arm7/1pc2468.cfg

For SPI memory connected to a NXP LPC4000 CPU these are:

CHIP = SPI125_FLASH or AT45_DATAFLASH
CPU = LPC_SPIFI

SPIFI_BASE

CS_ASSERT

CS_RELEASE

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex—-m/1pc4300.cfg

PEEDI also supports software emulated SPI interface FLASH programming. In this case the FLASH is con-
nected to CPU GPIOs and PEEDI drives them to emulate SPI interface. Here are the needed config parame-
ters:

CHIP = SPI125_FLASH or AT45_DATAFLASH
CPU = GENERIC_SPI

CS_ASSERT

CS_RELEASE

PEEDI User’s Manual 45 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_pm9263.cfg
http://download.ronetix.info/peedi/cfg_examples/blackfin/bf532.cfg
http://download.ronetix.info/peedi/cfg_examples/arm7/lpc2468.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/lpc4300.cfg
http://www.ronetix.at

Using PEEDI

SCLK_SET
SCLK_CLR
MOSI_SET
MOSI_CLR
MISO_READ
FILE
AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_soft_spi.cfg

NAND FLASH programming

PEEDI is able to program all NAND chips with 8 and 16 bits data bus.

The INIT section of the config file must include the initialization for the chip select and the GPIOs, because
the Flash Programmer doesn't make any initialization.

The NAND Flash devices may have blocks that are invalid when they are shipped.

An invalid block is one that contains one or more bad bits. Additional bad blocks may develop with use.

The factory identifies invalid blocks before shipping by programming data other than FFh (x8) or FFFFh (x16)
into the first spare location of the first or second page of each bad block. PEEDI automatically detects the bad
blocks and reports them using the £lash info and £lash query commands.

Once detected, the bad blocks are protected against erasing and programming.

On demand, PEEDI can be forced to try to erase the existing bad blocks.

It is also possible to force blocks as bad.

To erase all blocks including the bad blocks, set the ERASE_BAD_BLOCKS parameter to YES. After PEEDI
restart, the command £1lash erase will erase all blocks.

WARNING:
A If you erase blocks factory marked as bad, there is now way to detect which were the
bad blocks.

Make sure you have saved the output of the £lash query command so you can mark again the bad blocks
as bad.

To force marking of blocks 4, 27 and 1002 as bad set BAD_BLOCKS parameter like this:
BAD_BLOCKS = 4, 27, 1002

After PEEDI restart, the £lash info command will mark the given blocks as bad. Once marked as bad,
the blocks a not marked anymore.

PEEDI supports direct programming of JFFS2 images to the NAND flash. For this, the OOB_INFO parameter
must be set to 'JFFS2'. This way PEEDI will the write the data loading from the image file and will calculate
the ECC and program it to the OBB/spare bytes. PEEDI supports only BIN images starting from address 0.
When programming the image bad blocks will be just skipped and left un-programmed. They will not affect
the block count order.

PEEDI User’s Manual 46 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_soft_spi.cfg
http://www.ronetix.at

Using PEEDI

If you use a custom file system, using PEEDI you can program a bootloader to the NAND chip, that will gain
the control of the system after it is rebooted and could handle the programming of the left empty NAND FLASH
chip, considering the NAND file system you use and the bad block present in the given target.

WARNING:

The PEEDI TFTP client uses 512 bytes or 2048 bytes (if supported by the TFTP server)
A transfer block size, which limits the size of the image file to 32MB or 128MB. If your file

is bigger, use HTTP/FTP file server or use MMC/SD card to store the file and put it on

PEEDI.

The parameters for NAND FLASH memory mapped to the CPU memoryspace are:

CHIP = NAND_FLASH
DATA_BASE
CMD_BASE
ADDR_BASE
CS_ASSERT
CS_RELEASE
ALE_ASSERT
ALE_RELEASE
CLE_ASSERT
CLE_RELEASE
BAD_BLOCK_TABLE
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO

FILE

AUTO_ERASE

Examples: http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_pm9263.cfg

The parameters for NAND FLASH memory connected to Atmel SAM9X5 or SAMAS are:

CHIP = NAND_FLASH
CPU = ATSAMAS
DATA_BASE
CMD_BASE
ADDR_BASE
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO = AT91_PMECC
NUM_ECC =8
HEADER = YES

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex—a/atsama5d3.cfg

The parameters for NAND FLASH memory connected to Tl Davinci CPU are:

PEEDI User’s Manual 47 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/at91sam9263_pm9263.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-a/atsama5d3.cfg
http://www.ronetix.at

Using PEEDI

PEEDI User’s Manual 48 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CHIP = NAND_FLASH

CPU = TMS320DM365

DATA_BASE

CMD_BASE

ADDR_BASE

BAD_BLOCK_TABLE

BAD_BLOCKS

ERASE_BAD_BLOCKS

OOB_INFO

FILE

AUTO_ERASE
DAVINCI_UBL_DESCIPTOR_MAGIC
DAVINCI_UBL_DESCIPTOR_ENTRY_POINT
DAVINCI_UBL_DESCIPTOR_LOAD_ADDR
DAVINCI_UBL_MAX_IMAGE_SIZE

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/tms320dm365-DM365EVM. cfg

The parameters for NAND FLASH connected to Freescale i.MX or MPC5121 CPU are:

CHIP = NAND_FLASH
CPU = iMX31|MPC5121
BAD_BLOCK_TABLE
BAD_BLOCKS
ERASE_BAD_BLOCKS
SWAP_BI

OOB_INFO = IMX_ECC
FILE

AUTO_ERASE

Examples:
http://download.ronetix.info/peedi/cfg_examples/armll/mx31.cfg
http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5121_aria.cfg

The parameters for NAND FLASH connected to Freescale MPC5125 CPU are:

CHIP = NAND_FLASH
CPU = MPC5125
ADDR_BASE
CMD_BASE
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5125.cfg

The parameters for NAND FLASH connected to Freescale MPC83xx or Pxxxx CPU are:

PEEDI User’s Manual 49 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/tms320dm365-DM365EVM.cfg
http://download.ronetix.info/peedi/cfg_examples/arm11/mx31.cfg
http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5121_aria.cfg
http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5125.cfg
http://www.ronetix.at

Using PEEDI

PEEDI User’s Manual 50 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CHIP = NAND_FLASH
CPU = MPC83XX|P101X
CMD_BASE
ADDR_BASE
DATA_BASE
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO = FF

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc8313.cfg

The parameters for NAND FLASH connected to Analog Devices Blackfin BF52x or BF54x CPU are:

CHIP = NAND_FLASH

CPU = BF52X|BF54X
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO = BLACKFIN_ECC
FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/blackfin/bf527.cfg

OneNAND FLASH programming

The parameters for OneNAND FLASH memory are:

CHIP = ONENAND
ADDR_BASE
BAD_BLOCKS
ERASE_BAD_BLOCKS
OOB_INFO

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/xscale/pxa270_onenand.cfg

MMC/SD card programming

The parameters for MMC/SD card are:

CHIP = CARD
CPU = iMX35

PEEDI User’s Manual 51 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc8313.cfg
http://download.ronetix.info/peedi/cfg_examples/blackfin/bf527.cfg
http://download.ronetix.info/peedi/cfg_examples/xscale/pxa270_onenand.cfg
http://www.ronetix.at

Using PEEDI

PARTITION
FILE

All flash commands on MMC/SD card takes address and length (if application) parameter in blocks, not in
bytes.

Example: http://download.ronetix.info/peedi/cfg_examples/armll/mx35_eMMC.cfg

Atmel SAM3/SAM4 programming

The parameters for the Atmel SAM3/SAM4 family are:

CHIP = ATSAM
FILE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex-m/atsam.cfg

Atmel AVR32UC3 programming

The parameters for the Atmel AVR32UC3 family are:

CHIP
AUTO_LOCK
SECURE_FLASH
FILE
AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/avr32/avr32uc.cfg

Freescale Kinetis programming

The parameters for the Freescale Kinetis family are:

CHIP = KINETIS
FILE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex—-m/kinetis.cfg

TlI/Luminary LM3S programming

The parameters for the Tl/Luminary LM3S family are:

PEEDI User’s Manual 52 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm11/mx35_eMMC.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/atsam.cfg
http://download.ronetix.info/peedi/cfg_examples/avr32/avr32uc.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/kinetis.cfg
http://www.ronetix.at

Using PEEDI

CHIP

CPU_CLOCK
ACCESS_METHOD
USE_WRITE_BUFF
FILE
AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex-m/1m3s8962.cfg

NXP LPC2000 programming

To successfully program a LPC2000 device make sure you have specified valid RAM address for the
CORE_WORKSPACE parameter in the PLATFORM_ARM section. The internal RAM starts from 0x40000000,
so this is a good value for this parameter.

To successfully verify the FLASH contents, first you must set the MEMMAP register to map the flash vectors
at address 0x00000000 like this:

memory write OxEO1FC040 0x00000001

You may issue the previous command every time you need to verify or you may put it in the init section of the
core in the target configuration file, this way it will be executed automatically.

To secure the LPC2000 device, your application must set FLASH address location 0x1FC (User flash sector
0) with value 0x87654321 (2271560481 Decimal) when programmed. This will disable the JTAG port and
some of the ISP commands on the next reset.

The only way to un-secure the device is to use ISP command to erase the FLASH. This can be made with the
Philips LPC2000 FLASH utility.

For more information about the LPC2000 securing (code protection) read the LPC2000 user’s manual.

The parameters for the NXP LPC2000 family are:

CHIP
PART_ID

BANK

CPU_CLOCK

FILE

AUTO_ERASE
SET_VECTORS_CHECKSUM

Example: http://download.ronetix.info/peedi/cfg_examples/arm7/1pc2138.cfg
LPC CPU’s may return an incorrect CPU ID as shown in the example below where the LPC1343 CPU is used:

lpc> flash info

- error: unknown part ID: 0x3000002b

++ info: some CPUs (like LPC1343) return wrong ID.

In this case put in the configuration file:

"PART_ID = X’, where X is the correct device ID from User Manual
— error: unable to start flash programmer

lpc>

PEEDI User’s Manual 53 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/cortex-m/lm3s8962.cfg
http://download.ronetix.info/peedi/cfg_examples/arm7/lpc2138.cfg
http://www.ronetix.at

Using PEEDI

In such case use the PART_ID parameter as in the following example:

PART_ID = 0x3D00002B; Correct LPC1343 CPU ID

LPC CPU’s consist of six main groups:
LPC800,LPC1100,LPC1700,LPC2000,LPC4300,LPC54100

For example to enable flash programming for LPC1343 do:

CHIP = LPC1100

The following is a list of CPU’s for each group.

For LPC800:

LPC810,LPC811,LPC812,LPC822,LPC824

For LPC1100:
LPC1110,LPC1111,LPC11A11,LPC11E11,LPC1311,LPC1112,1LPC11A02,
LPC11C12,LPC11C22,LPC11A12,LPC11E12,1PC11U12,1LPC11U12,LPC1342,
LPC1113,LPC11A13,LPC11E13,LPC11U13,LPC11U13,LPC11U23,1PC1114,
LPC11A04,1PC11A14,1LPC11A14,LPC11C14,1LPC11C24,1LPCl11E14,LPC11U14,
LPC1l1U14,1PC11U24,1LPC1313,LPC1315,LPC1343,1LPC1345,LPC11U34,1LPC1316,
LPC1346,LPC1115,LPC11U35,LPC1317,LPC1347,LPC11E36,LPC11U36, LPC11E37,

LPC11E37,LPC11U37,LPC11U37H, LPC11U37

For LPC1700:
LPC1751,LPC1752,LPC1754,LPC1764,LPC1774,LPC1756,LPC1763,LPC1765,LPC1766,
LPCl1776,LPC1785,LPC1786,LPC1758,LPC1759,LPC1767,1LPC1768,LPC1769,LPC1777,
LPC1778,LPC1787,LPC1788

For LPC2000:
LPC2103,LPC2104,1LPC2105,LPC2106,LPC2114,1LPC2119,1LPC2124,1LPC2214,1PC2129,
LPC2194,1LPC2292,1PC2294,1PC2131,1LPC2141,1LPC2141,1LPC2142,1LPC2134,1PC2144,
LPC2136,LPC2146,1LPC2366,LPC2138,1LPC2148,1LPC2368,LPC2387,
LPC2458,LPC2468,LPC2478

For LPC54100:

LPC54101,1LPC54102

Any flash chips not listed above are specified by there chipname.

For LPC2900 family:

This family of LPC CPU’s is a different group because its flash algorithms for programming vary from the other
groups.

The parameters for the LPC2900 are:

CHIP
CPU_CLOCK
FILE

PEEDI User’s Manual 54 www.ronetix.at

http://www.ronetix.at

Using PEEDI

AUTO_ERASE
ACCESS_METHOD

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/1pc2917.cfg

Specifying the CHIP argument for this group is done by providing the CPU name. For example see the
LPC2917 configuration:

CHIP = LPC2917

Nordic Semiconductor nRF51 ans nRF52 programming

nRF51xxx and nRF52xxx are supported and automatically detected. User Information Configuration Regis-
ters (0 - 255) are mapped as an additional bank and can be programmed with “flash program” and erased
with “flash erase”. UICR registers can be also programmed single using:

flash this uicr ADDR VAL - program a UICR register

Example (nRF52):
flash this uicr 0x208 OxFFFFFFO0O0 - enable access port protection (enable flash security)

If the Flash security is enabled, the only way to unlock the device is to perform JTAG Lockout Recovery
procedure.

PEEDI executes a 'JTAG Lockout Recovery’ during reset processing if the nRF5 Flash is secured and if the
configuration file contains:
CORE_LOCKOUT_RECOVERY = NRF5

The parameters for the nRF5 family are:

CHIP = NRF5
FILE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex-m/nrf5.cfg

Freescale MAC7100 programming

In program FLASH the address range from 0x0400 to 0x041F is used to set the FLASH security. If there is
user code this could secure the FLASH incidentally, so avoid placing code there.

flash erase chip - perform MASS ERASE
flash lock- write at address OxFC100414 = OxFFFFFFFCO (enable flash security)

If the Flash security is enabled, the only way to unlock the device is to perform JTAG Lockout Recovery
procedure.

PEEDI executes a 'JTAG Lockout Recovery’ during reset processing if the MAC7100 flash is secured and if
the configuration file contains:
CORE_LOCKOUT_RECOQVERY = clkd

The parameters for the Freescale MAC7100 family are:

PEEDI User’s Manual 55 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/lpc2917.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/nrf5.cfg
http://www.ronetix.at

Using PEEDI

PEEDI User’s Manual 56 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CHIP = MAC7100 or MAC7100_DATA
CPU_CLOCK

FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/arm7/mac7100.cfg

Freescale ColdFire V2 programming

Theparameters for the Freescale ColdFire V2 family are:

CHIP
BASE_ADDR
IPS_BASE
CPU_CLOCK
FILE
AUTO_ERASE

WARNING:
A Set very carefully the CPU_CLOCK parameter otherwise the FLASH may be dam-
aged.

Example: http://download.ronetix.info/peedi/cfg_examples/coldfire/mcf5282.cfg

Freescale MPC5000 programming

The parameters for the Freescale MPC5xxx family are:

CHIP = MPC5XXX
FILE

Example: http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5554.cfg

ST STM32 programming

In the STM32 microcontrollers, the FLASH may be write-protected. The protection is set using the STM32
option bytes. Option bytes are used to configure also other STM32 CPU settings - for more information see
the STM32F10xxx Flash programming.

For managing STM32 option bytes, PEEDI has the f£lash this option command. To erase all option
bytes use flash this option erase.

To write a single option byte, use £lash this option BYTE VALUE. An option byte can be written only
once after it is erased. If you want to change the value of previously written byte you must erase it - this will
erase all other option values, so you may need to set them again.

PEEDI User’s Manual 57 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm7/mac7100.cfg
http://download.ronetix.info/peedi/cfg_examples/coldfire/mcf5282.cfg
http://download.ronetix.info/peedi/cfg_examples/powerpc/mpc5554.cfg
http://www.ronetix.at

Using PEEDI

You can see current option bytes using memory readlé Ox1FFFF8008.

The patameters for the ST STM32 family are:

CHIP

BASE_ADDR
F2F4_PSIZE
ACCESS_METHOD
FILE

SERIAL_NUM
AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex-m/stm32.cfg

ST STR7 programming

In the STR7 microcontrollers, several memory regions may be mapped at address 0x00000000, including the
internal FLASH. So these are the acceptable values for the BASE_ADDR parameter in the FLASH section:

- 0x00000000 (STR71x and STR73x)
- 0x40000000 (STR71x)
- 0x80000000 (STR73x)

If the SECURE_FLASH target configuration parameter is set to YES. The first time, the device is secured by
programming the DBGP bit of the NVAPRO register. Each time after, the device is secured programming the
next un-programmed bit PEN bit of the NVAPR1 register.

Keep in mind that once secured, the device may be temporary or permanently unsecured only by the code
that is programmed in the FLASH, so avoid securing the device if the code inside it can not unlock it, because
the devise may become unusable.

The device can be permanently secured-unsecured only sixteen times, because after that all NVAPR1 bits
are programmed.

The patameters for the ST STR7 family are:

CHIP

DATA_BANK
ACCESS_METHOD
BASE_ADDR
SECURE_FLASH
FILE
AUTO_ERASE
AUTO_LOCK

Example: http://download.ronetix.info/peedi/cfg_examples/arm7/str710.cfg

PEEDI User’s Manual 58 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/cortex-m/stm32.cfg
http://download.ronetix.info/peedi/cfg_examples/arm7/str710.cfg
http://www.ronetix.at

Using PEEDI

ST STR9 programming

The parameters for the ST STR9 family are:

CHIP = STR912
BANK_SIZE
FILE

PEEDI has built in commands for managing the STR9 In System Configuration (ISC):

flash
flash
flash
flash
flash
flash
flash

this
this
this
this
this
this
this

isc_erase
isc_erase 0x3

isc_conf_read

isc_boot_bank 0
isc_boot_bank 1

isc_lock

— ISC full erase
— ISC erase sector 0 and 1 of bank 0
isc_conf_write 0x0001000000000000 - set bank 1 as boot

— print current configuration

set booting from bank 0
set booting from bank 1
lock STRY device

Example: http://download.ronetix.info/peedi/cfg_examples/arm9/str9.cfg

TI TMS570 programming

The parameters for the TI TMS570 family are:

CHIP = TMS570
CPU_CLOCK
FILE

Example: http://download.ronetix.info/peedi/cfg_examples/cortex—a/tms570.cfg

TI TMS470 programming

TMS470 devices use four WORD long keys to protect FLASH from unwanted erase/write operations, so be
careful not to write them accidentally The keys are reported every time the FLASH is programmed.

Every time PEEDI first tries to unlock FLASH using the default keys (OxFFFFFFFF), if fails it uses the keys
pointed out in the target configuration file. This way you can erase and program the FLASH without the
need of changing the keys for each operation, because during FLASH erase the keys are automatically set to
OxFFFFFFFF.

In TMS470 devices that have Memory Security Module (MSM), if the currently programmed MSM keys are
different from OXFFFFFFFF, you have to put this unlock sequence in the INIT section:

PEEDI User’s Manual

59

www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm9/str9.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-a/tms570.cfg
http://www.ronetix.at

Using PEEDI

[INIT_TMS470]

; dummy read the four keys
mem read 0x0000ffe0

mem read 0x0000ffe4d

mem read 0x0000ffe8

mem read 0x0000ffec

; try to unlock the device using the correct MSM keys
mem write OXFFFFF700 0OxXXXXXXXX
mem write OXFFFFF704 0xXXXXXXXX
mem write OXFFFFF708 0xXXXXXXXX
mem write OXFFFFF70C 0xXXXXXXXX

Where OxXXXXXXXX’s are the right MSM keys. The four word passwords location in the internal FLASH
for the MSM1 is placed starting from the last eight words of the first flash sector. Please see the datasheet
of your TMS470 CPU to check the right addresses of the keys in FLASH memory and the addresses of the
registers where the keys have to be entered. These passwords are used to insecure the device in case it has
been partly secured.

The ALLOW_ZERO_KEYS FLASH section parameter is used to protect the device from unwanted permanent
locking of the device - this may happen if MSM keys all of 0x000000000 are programmed in to the FLASH.

Some TMS470 devices have internal Analog Watch Dog timer (AWD). The AWD must be disabled in order to
use PEEDI for debugging or programming. The AWD can be disabled by grounding the AWD pin. Alternatively
WDKICK_TIME CFG parameter can be used and PEEDI will kick periodically the AWD.

The patameters for the TI TMS470 family are:

CHIP
ACCESS_METHOD
BASE_ADDR
CPU_CLOCK
PROTECTION_KEYO
PROTECTION_KEY1
PROTECTION_KEY2
PROTECTION_KEY3
ALLOW_ZERO_KEYS
FILE

AUTO_ERASE

Example: http://download.ronetix.info/peedi/cfg_examples/arm7/tms470.cfg

PIC32, SmartFusion A2F, ADuC, EFM32 programming

The parameters for the Microchip PIC32, Actel SmartFusion A2F, Analog ARM7 ADuC, EnergyMicro EFM32
family are:

CHIP
ACCESS_METHOD
FILE
AUTO_ERASE

PEEDI User’s Manual 60 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/arm7/tms470.cfg
http://www.ronetix.at

Using PEEDI

Examples:
http://download.ronetix.info/peedi/cfg_examples/cortex-m/a2f200.cfg
http://download.ronetix.info/peedi/cfg_examples/arm7/aduc7034.cfg
http://download.ronetix.info/peedi/cfg_examples/mips/pic32.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/efm32.cfg

CHIP
Synopsis
CHIP = <type>
Description
FLASH chip type. To find if your flash is supported and see its exact name, use £lash
f£ind. If your FLASH chip is not supported by the current FLASH database please con-
tact us and we will provide you with the latest database. This parameter may be present
multiple times in a single FLASH section, each time specifying different FLASH chip. This
way if the CHECK_ID parameter is YES, PEEDI will read the onboard FLASH ID and will
find the right chip among the all chips enumerated using the CHIP parameter.
PART_ID
Synopsis
PART _ID = <hexadecimal_value>
Description
This parameter is used to override an incorrect CPU ID for LPC processors.
PARTITION
Synopsis
PARTITION = <value>
Description
This parameter is used to select current eMMC partition.
Use ‘flash this part’ to manage the eMMC partitions.
BANK

Synopsis
Bank = <number>

Description
Some devices have more than one flash bank. By this parameter it can be specified

which flash bank is configured. For example to configure the first bank of a device with
flash banks A and B specify the parameter like so:
BANK = 0;

To configure the second bank specify:
BANK = 1;

PEEDI User’s Manual 61 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples/cortex-m/a2f200.cfg
http://download.ronetix.info/peedi/cfg_examples/arm7/aduc7034.cfg
http://download.ronetix.info/peedi/cfg_examples/mips/pic32.cfg
http://download.ronetix.info/peedi/cfg_examples/cortex-m/efm32.cfg
http://www.ronetix.at

Using PEEDI

CHECK_ID

Synopsis
CHECK_ID = YES|NO

Description
When specified YES, if single FLASH chip is described by the CHIP parameter, PEEDI will

check if the onboard FLASH chip reports the same as selected by the CHIP parameter. If
multiple FLASH chips are enumerated using more than one CHIP parameter, PEEDI will
automatically consider the chip which ID matches the reported by the onboard FLASH
chip.

ACCESS_METHOD

Synopsis
ACCESS_METHOD = AUTO|AGENT|DIRECT

Description
Flash programming method. If AGENT is specified, the FLASH programmer will return an

error if the agent failed to start; if AUTO is specified, the programmer will try to start the
agent; if failed it will perform direct programming. If DIRECT is specified the programmer
will perform direct programming.

Note:

Programming using agent is many times faster than programming directly. To enable
0 agent usage set COREn_WORKSPACE parameter in the PLATFORM section of the

target configuration file.

CHIP_WIDTH
Synopsis
CHIP_WIDTH = 8|16|32
Description
Chip width, some FLASH chips support several widths.
CHIP_COUNT
Synopsis
CHIP_COUNT =1|2|4
Description

Number of FLASH chips.

PEEDI User’s Manual 62 www.ronetix.at

http://www.ronetix.at

Using PEEDI

CHIP_SIZE
Synopsis
CHIP_SIZE = <chip_size>, [page_size]
Description
Size of EEPROM chip and optional write page size.
BASE_ADDR
Synopsis
BASE_ADDR = <address>
Description
Start address of FLASH.
FILE
Synopsis
FILE = FILE_NAME, FILE_FORMAT], FILE_ADDRESS]
Description
This parameter defines the default flash (multi) programcommand’s arguments.
This parameter may have two or three arguments. The first argument is the file to be
programmed.
The second argument is the file type - BIN, SREC, IHEX or ELF.
The third argument is mandatory for binary files and optional for all other types of files - it
is the address where the file should be loaded.
SPI_MODE
Synopsis
SPI_MODE = <number>
Description
By default, this parameter takes the value of '0’. Available SPI modes are '0’ and '3’
AUTO ERASE
Synopsis
AUTO_ERASE = YES|NO
Description

Do or do not erase affected FLASH sectors before program operation, for more informa-
tion, see flash programcommand.

PEEDI User’s Manual 63 www.ronetix.at

http://www.ronetix.at

Using PEEDI

AUTO_LOCK
Synopsis
AUTO_LOCK = YES|NO
Description
Do or do not lock affected FLASH sectors (if supported from FLASH) after program oper-
ation, this would prevent FLASH form accidental write or erase operations.
CPU_CLOCK
Synopsis
CPU_CLOCK = <kHz>
Description

The CPU clock after the initialization.

Used when describing internal FLASH of Atmel AT91SAM?7, Philips LPC2000 and
Freescale MAC7100 or MCF5200 series microcontrollers

SECURE_FLASH

Synopsis
SECURE_FLASH = YES|NO

Description
Do or do not secure FLASH to avoid external reading operations. This disables the JTAG
interface until the whole FLASH is erased, so any JTAG operations are impossible after
FLASH is programmed and secured.

Used when describing internal FLASH of Atmel AT91SAM?7 series microcontrollers.

SET_VECTORS_CHECKSUM

Synopsis
SET_VECTORS_CHECKSUM = YES|NO

Description
Set this parameter to YES, if you want PEEDI to automatically calculate and set the
exception vectors checksum at address 0x14 while programming FLASH. This check
sum is required by the microcontroller bootloader as evidence that valid user application
resist in the FLASH, so the control will be passed to it.

Used when describing internal FLASH of Philips LPC2000 series microcontrollers.

PEEDI User’s Manual 64 www.ronetix.at

http://www.ronetix.at

Using PEEDI

DATA_BANK
Synopsis
DATA_BANK = YES|NO
Description
Set this parameter to YES, if your device has flash data bank (bank1).
Used when describing internal FLASH of ST STR7 series microcontrollers.
BANK_SIZE
Synopsis
BANK_SIZE = <bank0_size>,<bank1_size>
Description
Set this parameter to the sizes of the STR9 FLASH banks.
Used when describing internal FLASH of ST STR9 series microcontrollers.
F2F4_PSIZE
Synopsis
F2F4_PSIZE = 8|16|32|64
Description

Set this parameter 8, 16, 32 or 64, which selects the program parallelism for fast STM32
FLASH programming. 64-bit parallelism can be used only if external Vpp is provided. If
missing, 16-bit parallelism is used by default.

PROTECTION_KEYO - PROTECTION_KEY3

Synopsis
PROTECTION_KEYO = <value0>
PROTECTION_KEY1 = <value1>
PROTECTION_KEY2 = <value2>
PROTECTION_KEY3 = <value3>

Description
These four parameters define the four FLASH security keys that are used to unlock the
FLASH for erasing and writing.

Used when describing internal FLASH of TI TMS470 series microcontrollers.

PEEDI User’s Manual 65 www.ronetix.at

http://www.ronetix.at

Using PEEDI

ALLOW_ZERO_KEYS

Synopsis
ALLOW_ZERO_KEYS = YES|NO

Description
This parameter is used to prohibit programming of new Memory Security Module keys

that are all 0x00000000, because this will permanently lock the TMS against debugging
and programming.

Used when describing internal FLASH of TI TMS470 series microcontrollers.

CPU
Synopsis
CPU = AT91RM9200 | AT91SAM9261 | AT91SAM9263 | AT91SAM7 | ATSAMAS5S
| iIMX21 | iIMX23 | iIMX25 | iMX27 | iMX31 | iMX35 | iMX51 | iMX53 | BF5XX
| BF52X | BF54X | MC1322X | MPC5121 | MPC5125 | MPC83XX | NS92XX |
TMS320DM355 | TMS320DM365 | LPC2XXX | LPC318X_MLC | LPC3XXX_SLC |
PXA3XX | GENERIC_SPI | GENERIC_I2C
Description
Target CPU
Used when describing NAND, Card, SPI, 12C or Atmel DataFlash.
SPI_DIV
Synopsis
SPI_DIV = <div>
Description
SPI divider:
AT91RM9200: Fspi = (MCK/2)/SPI_DIV
AT91SAM9261: Fspi = MCK/SPI_DIV
Used when describing Atmel DataFlash.
nSPI
Synopsis
nSPI = 01
Description

SPI controller to use

Used when describing Atmel DataFlash.

PEEDI User’s Manual 66 www.ronetix.at

http://www.ronetix.at

Using PEEDI

nCS
Synopsis
nCS =0..3
Description
Chip select to use
Used when describing Atmel DataFlash.
SPI_SPCK
SPI_MISO
SPI_MOSI
SPI_CS
Synopsis
SPI_SPCK = <controller>, <peripheral>, <pin>
Description
This describes which PIOs are dedicated to the SPI SPCK, MISO and MOSI signals.
Used when describing Atmel DataFlash.
If the CPU parameter is set to BF5XX, only SPI_CS is accepted and expects 1..7, which
corresponds to FLG1-FLG7. See Blackfin’'s SPI_FLG.
Example
SPI_SPCK = PIOA, A, 2
SPI_MISO = PIOA, A, O
SPI_MISO = PIOA, A, 1
SPI_CS = PIOA, A, 3
CMD_BASE
Synopsis
CMD_BASE = <address>
Description
Base address, that if written to, the NAND CLE signal will be asserted.
On MPC83XX devices with built-in NAND FLASH controller this parameter tells PEEDI
the offset of Internal Memory Mapped Registers, i.e. value of IMMRBAR.
DATA BASE

Synopsis
DATA_BASE = Address

Description
Base address, that if written to, the NAND ALE and CLE signals will be inactive.

On MPC83XX devices with built-in NAND FLASH controller this parameter tells PEEDI
the address of the data buffer used by NAND FLASH controller.

PEEDI User’s Manual 67 www.ronetix.at

http://www.ronetix.at

Using PEEDI

ADDR_BASE

Synopsis
ADDR_BASE = <address>

Description
Base address, that if written to, the NAND ALE signal will be asserted.

CS_ASSERT/RELEASE
ALE_ASSERT/RELEASE
CLE_ASSERT/RELEASE

Synopsis
CS_ASSERT = <address>, <data>
CS_RELEASE = <address>, <data>
ALE_ASSERT = <address>, <data>
ALE_RELEASE = <address>, <data>
CLE_ASSERT = <address>, <data>
CLE_RELEASE = <address>, <data>

Description
Describes memory write operation ([address]=data) that will assert/release the NAND
chip select, Address Latch Enable and Command Latch Enable connected to a corre-
sponding PIO pin.

BAD_BLOCK_TABLE

Synopsis
BAD_BLOCK_TABLE = YES|NO
Description
If this parameter is set to YES, PEEDI will check for Linux style main and mirror Bad

Block Tables and if not found, it will create them on the last two good blocks of the NAND
FLASH chip.

BAD_BLOCKS

Synopsis
BAD_BLOCKS = <bad1>, <bad2>,...

Description
List of blocks to be marked as bad.

ERASE_BAD_BLOCKS

Synopsis
ERASE_BAD_BLOCKS = YES|NO

Description
If this parameter is se to YES, PEEDI will try to erase even the bad NAND blocks.

PEEDI User’s Manual 68 www.ronetix.at

http://www.ronetix.at

Using PEEDI

WARNING:
A If you erase blocks factory marked as bad, there is no way to detect which were the
bad blocks.
SWAP_BI
Synopsis

SWAP_BI = YES|NO

Description
If this parameter is se to YES, PEEDI will swap the bad block marker ECC byte with a

spare one. This option is applicable for iIMX21, iIMX25, iIMX27, iIMX31 and iMX35 targets
only.

PEEDI User’s Manual 69 www.ronetix.at

http://www.ronetix.at

Using PEEDI

OOB_INFO
Synopsys
OOB_INFO = <o0b_type>
Description
How to deal with the Out Of Band (OOB/spare) page
bytes. Spare bytes are extra bytes added to the page.
JFFS2 - data bytes will be read from the image file, spare
bytes will be filled with ECC data (6 bytes for 512
bytes page, 24 bytes for 2048 bytes page).
JFFS2_NO_EM - like JFFS2 but PEEDI does not write erase/clean
markers
RAW - data and spare bytes will be loaded from the im-
age file, default if OOB_INFO parameter is missing
YAFFS - like RAW, but bad blocks are skipped
FF - only data bytes will be read from the image file,
spare bytes will be set to OxFF
ONDIE_ECC - Micron NAND FLASH On-Die ECC
AT91SAM9 - Atmel AT91SAM9 hardware ECC
AT91_PMECC - Atmel AT91SAM9X5 and SAMA5
BLACKFIN_ECC - ADI Blackfin hardware ECC
IMX_ECC - Freescale iMX hardware ECC
IMX23 BCH - Freescale iMX23 hardware ECC
LPC_ECC - NXP LPC hardware ECC
OMAP3_ECC - TI Omap3 hardware ECC
OMAP4_BCH8 ROMCODE - TI Omap4 hardware ECC
OMAP4_BCHS8 - TI Omap4 hardware ECC
OMAP4_HAMMING - TI Omap4 hardware ECC
PXA_ECC - Marvell PXA3XX hardware ECC
ONENAND - OneNAND hardware ECC
DAVINCI_ECC - Tl DaVinci Hardware ECC, 4 bytes per 512 bytes
data
DAVINCI_ECC_HW6_512 - DaVinci hardware ECC, 6 bytes per 512 bytes
data
DAVINCI_ECC_HW6 512 2610 - DaVinci hardware ECC, 6 bytes per 512 bytes
data with workaround for a JFFS2 bug in Linux ker-
nel 2.6.10
DAVINCI_ECC_HW10_512 - DaVinci hardware ECC, 10 bytes per 512 bytes
data
DM355_BOOT - TI TMS320DM355 hardware ECC
DM355_LINUX - TI TMS320DM355 hardware ECC
DM355_JFFS2 - TI TMS320DM355 hardware ECC
DM365_BOOT - TI TMS320DM365 hardware ECC
DM365_LINUX - TI TMS320DM365 hardware ECC
DM365_JFFS2 - TI TMS320DM365 hardware ECC
OMAPL138_ECC - TI OMAP L138 hardware ECC
S5PC100_1BIT_ECC - Samsung S5PC100 hardware ECC
S5PC100_8BIT_ECC - Samsung S5PC100 hardware ECC
MPC5125_LOADER - Freescale MPC5125 hardware ECC
MPC5125_UBOOT - Freescale MPC5125 hardware ECC
APM_ECC - AMCC APM83xxx hardware ECC
PEEDI User’s Manual 70 www.ronetix.at

http://www.ronetix.at

Using PEEDI

DAVINCI_UBL_DESCIPTOR_MAGIC

Synopsis
DAVINCI_UBL_DESCIPTOR_MAGIC = <value>

Description
Descriptor magic - the first 32-bit value in the UBL descriptor.

It set to non-zero value, programming of the file image is relocated with one NAND Flash
page (512 or 2048 bytes). The skipped page is used for the UBL descriptor and it is filled
by PEEDI.

Used when describing NAND FLASH for Tl DaVinci CPU.

DAVINCI_UBL_DESCIPTOR_ENTRY_POINT

Synopsis
DAVINCI_UBL_DESCIPTOR_ENTRY_POINT = <value>

Description
This value will be programmed at offset 0x4 in the UBL descriptor

Used when describing NAND FLASH for Tl DaVinci CPU.
ublentry

DAVINCI_UBL_DESCIPTOR_LOAD_ADDR

Synopsis
DAVINCI_UBL_DESCIPTOR_LOAD_ADDR = <value>

Description
Used when describing NAND FLASH for Tl DaVinci CPU.

DAVINCI_UBL_MAX_IMAGE_SIZE

Synopsis
DAVINCI_UBL_MAX_IMAGE_SIZE = <Value>

Description
Used by PEEDI to print a warning if the programmed file size exceeds this limit.

Used when describing NAND FLASH for Tl DaVinci CPU.

NUM_ECC

Synopsis
NUM_ECC = <Value>

Description
Set the used ECC - 2, 4 or 8-bit.

Used when describing NAND FLASH for Atmel AT91SAM9x5 or ATSAMAS5 CPU.

PEEDI User’s Manual 71 www.ronetix.at

http://www.ronetix.at

Using PEEDI

HEADER

Synopsis
HEADER = YES|NO

Description
If YES, then a 52-byte header will be automatically inserted at the beginning of the image.

Used when describing NAND FLASH for Atmel AT91SAM9x5 or ATSAMAS5 CPU.

IPS_BASE

Synopsis
IPS_BASE = <address>

Description
ColdFire Internal Peripheral System base address.

SPIFI_BASE

Synopsis
SPIFI_BASE = <address>

Description
NXP SPIFI controller base address.

NCB_DATA

Synopsis
NCB_DATA = <valueO>, <valuel>, ...

Description
Freescale iMX23 NCB data structure to be programmed in NAND

LDLB_DATA

Synopsis
LDLB_DATA = <value0>, <valueis>, ...

Description
Freescale iMX23 LDLB data structure to be programmed in NAND

PEEDI User’s Manual 72 www.ronetix.at

http://www.ronetix.at

Using PEEDI

SERIAL_NUM
Synopsis
SERIAL_NUM = FILE, ADDRESS, WIDTH
Description
If this parameter is present, PEEDI will program a unique serial number on the given
FLASH location with each £lash program command, this way if PEEDI is used in
production, each board programmed will get an unique serial number.
The parameter has tree arguments:
FILE - path to a text file which contains the last serial number that is programmed. The
file must contain only one line with the number, with no leading trailing spaces or any
other characters. For example:
<start of file>
341
<end of file>
Each time PEEDI programs a board, it loads the file, gets the last serial number incre-
ments it and stores the new value back in the file, and so if the file resides on a TFTP
or a FTP server, the server must allow write access (upload) of the file. File may also
resides on a MMC/SD card or in the PEEDI internal EPPROM file system, note that each
EEPROM has a limited number of writes.
ADDRESS - where the serial number will be programmed, must be aligned to the serial
number bits width.
WIDTH - bits width of the serial number value - 16, 32, 64.
Currently the SERIAL_NUM parameter is supported for external NOR FLASH chips, At-
mel DataFlash SPI chips and Atmel AT91SAM7 devices.
I2C_ADDR
Synopsis
12C_ADDR = <address>
Description
The first byte in the 12C communication, which carries the chip address in the bus.
12C_DELAY
Synopsis
12C_DELAY = <value>
Description

Number of empty loops, used to achieve the 12C clock period.

PEEDI User’s Manual 73 www.ronetix.at

http://www.ronetix.at

Using PEEDI

SDA_SET
SDA _CLR
SDA_IN
SDA_OUT
SDA_READ
SCL_SET
SCL_CLR
Synopsis
SDA_SET = ADDRESS, AND|OR|EQU, DATA, [x8|x16|x32]
Description
Describes operation that will set/clear, set as input/output and read SDA/SCL pins of the
CPU. AND, OR and EQU operations are permitted:
AND - The value pointed by the address is AND-ed with the given data
OR - The value pointed by the address is OR-ed with the given data
EQU The data provided is written at the given address
CS_ASSERT
CS_RELEASE
SCLK_SET
SCLK_CLR
MOSI_SET
MOSI_CLR
MISO_READ
Synopsis
MOSI_SET = ADDRESS, AND|OR|EQU, DATA, [x8|x16|x32]
Description
Describes operation that will set/clear or read SPI pins of the CPU. AND, OR and EQU
operations are permitted:
AND - The value pointed by the address is AND-ed with the given data
OR - The value pointed by the address is OR-ed with the given data
EQU - The data provided is written at the given address
Section OS

This section contains parameters which help PEEDI scan the target OS task list.

PEEDI User’s Manual 74 www.ronetix.at

http://www.ronetix.at

Using PEEDI

ITEM

Synopsis
ITEM = <type_access>, <name>, <ofsset> [, offset[, offset]]

Description
type - type of the field:
int - item is an integer number
reg - item is a CPU register
str - item is a string

access - what memory access to be used to read:
4x8 - 32-bit value using 8-bit access

2x16 - 32-bit value using 16-bit access

32 - 32-bit value using 32-bit access

8x8 - 64-bit value using 8-bit access

4x16 - 64-bit value using 16-bit access

2x32 - 64-bit value using 32-bit access

64 - 64-bit value using 64-bit access

type_access argument might has a _abs suffix, which means that the address
calculated of the of £set parameters is an absolute memory location, not an offset from
the base of the task.

name - name of the item, might be a CPU register name or some of there:
BASE - it tells PEEDI the item is the base address of the task OS list
NEXT - itis a pointer to the next task in the list

PID - it is the process ID of the task

NAME - it is the human readable name of the task

offset - offset of the item in the task list, multiple offsets may be used for a
pointer-to-pointer like bahavior

As offset a valid application symbol might be used, this way, upon GDB connection,
PEEDI will ask GDB for the address of the given symbol and use it.

Example
ITEM = int32_abs, BASE, 0x12345678; BASE = 0x12345678
ITEM = int32_abs, BASE, 0x12345678, 0 ; BASE = x0x12345678
ITEM = int32_abs, BASE, 0x12345678, 0x20 ; BASE =
*(0x12345678+0x20)
ITEM = int32_abs, BASE, Cyg_Scheduler_Base::current_thread
ITEM int32_abs, BASE, Cyg_Scheduler_Base::current_thread,
0x20
ITEM = int32_abs, BASE, 0x20000000, 0x1234, offset2
ITEM = int32, PID, OxA4 ; PID = « (BASE + OxA4)
ITEM = string, NAME, OxXEC, offset2, offset3
ITEM = int32, RO, 0xC ; RO = * (BASE + 0xC)
ITEM = int32, R1, 0x10, 0x20 ;R1 = % (*(BASE + 0x10) + 0x20)
ITEM = reg32_abs, xPSR, 0x20000000, 0 ; xPSR = x0x20000000

Section SERIAL

The serial interface gets its configuration parameters from this section. These parameters are:

PEEDI User’s Manual 75 www.ronetix.at

http://www.ronetix.at

Using PEEDI

BAUD
Synopsis
BAUD = 1200|2400]4800|9600|19200|38400|57600|115200
Description
Baud rate
STOP_BITS
Synopsis
STOP_BITS = 1]1.5|2
Description
Stop bits
PARITY
Synopsis
PARITY = NONE|EVEN|ODD
Description
Parity
TCP_PORT
Synopsis
TCP_PORT = 0]1024..65535
Description
Port, serial traffic to be routed to. If set to 0, the PEEDI serial port is used for command
line interface. 0 - use PEEDI serial for command line interface.
Example
[SERIAL]
BAUD = 115200
STOP_BITS = 1
PARITY = NONE
TCP_PORT = 2023
Section TELNET

This section has only two parameters. The first sets the new command prompt string after the configuration
file is loaded. The second parameter can be omitted; it tells what ASCII code to be used for backspace action.

PEEDI User’s Manual

76 www.ronetix.at

http://www.ronetix.at

Using PEEDI

PROMPT
Synopsis
PROMPT = "<prompt>"
Description
This will change the default PEEDI telnet prompt
BACKSPACE
Synopsis
BACKSPACE = <code>
Description
Telnet backspace character ASCII code.
Example
[TELNET]
PROMPT = "peedi> "

BACKSPACE = 127

Section DISPLAY

These sections parameters specify the brightness of the seven segment LED indicator and the volume of the

speaker, both accept values in the range 0 - 100.

VOLUME

Synopsis
VOLUME = 0|100

Description
Speaker volume
Example
[DISPLAY]
VOLUME=0 - disable beeper
VOLUME=100 - enable beeper

Section ACTIONS

Declares what scripts can be executed using front panel buttons, each declaration must be on a new line.
The declaration consists of a number associated with the specified script name. A section with the same
name must exist somewhere in the target configuration file. If AUTORUN=N parameter is specified, where N
is number of a script, the given script will be executed every time a target is connected to PEEDI. For more

information see Script execution using the front panel interface .

Example:

PEEDI User’s Manual 77

www.ronetix.at

http://www.ronetix.at

Using PEEDI

PEEDI User’s Manual 78 www.ronetix.at

http://www.ronetix.at

Using PEEDI

3.4 CPU specific considerations

WARNING:
m The following may be extremely important for your target so read it very carefully.

3.4.1 Philips LPC2000 family

To successfully connect to a LPC2000 device the pull-down resistor that enables the JTAG interface must not
be more than 1k, because PEEDI has internal 10k pull-ups.

Because the JTAG clock is synchronized to the internal CPU clock it is recommended to use adaptive JTAG
clock or clock up to 1MHz for normal work (the second argument of the JTAG_CLOCK parameter).

3.4.2 ST STM32 family

Use the following commands in the target INIT script to enable SWO stimulus output:

; init SWO

mem write 0xE0042004 0x20 ; enable async trace

mem write 0xE0040010 1 ; SWO prescaler 1

mem write OxEQ0400F0 1 ; enable Manchester encoding
mem write 0xE0040304 0 ; bypass formatter

mem write OxXEOOOOFBO OxCS5ACCES5 ; unlock access to ITM registers
mem write OxEOOOOE80 0x10009 ; trace ID = 1, ITM enabled

mem write OxXEOOOOE40 OxF ; enable all tracing ports

mem write O0xEOOOOEOO OxXxFFFFFFFF ; enable all stimulus ports
PEEDI supports only Manchester SWO encoding up to 66MHz.
PEEDI checks for new incoming telnet connection only when the target CPU is halted.

If the SWO functionality seems unstable, lower the CPU clock or increase the SWO prescaler, both of these
will result in lower SWO clock.

3.4.3 Intel XScale family

Debugging XScale core is a little complicated by the fact that the exception vectors must be cached in the
mini instruction cache where the debug handler resides. PEEDI provides two ways of defining the vectors
see Section PLATFORM_XSCALE . First is to set them fixed - suitable when the vectors are not updated
dynamically at runtime. And the second is to tell PEEDI to read them from the target’s memory each time a
debug event occurs - suitable when vectors are set by the user application at runtime. There are several ways
to provoke a debug event:

1. Set 32 bit write access watch point at the last modified by the user code vector.
2. Set hardware breakpoint to a point of the code where the vectors have been set but not yet enabled.

3. In the source code, add a software break 'asm(’bkpt 1°);’, where the vectors have been set but not yet
enabled. PEEDI recognizes this special break and immediately starts the target again with refreshed
vectors.

PEEDI User’s Manual 79 www.ronetix.at

http://www.ronetix.at

Using PEEDI

Once the target has been stopped by the desired debug event, you can again start it and the exception vectors
will be updated. You can use the first way and a wait command to automate this in the INIT section of the
target configuration file:

[INIT_ _XSCALE]
break add watch Oxffff001C w 32 ; set watchpoint on FIQ vector

go ; start target
wait 30000 stop ; wait to break
go ; start again with updated vectors

If the vectors are set during code download, they will be automatically updated if defined AUTO.

If you want the target to be stopped after it is initialized, just remove the last two lines from the previous
example of the XScale init section.

Avoid using code that potentially could invalidate the mini instruction cache during debug:

- Don’t use 'MCR p15, 0, rd, c7, c¢5, 1’, instead use 'MCR p15, 0, rd, c7, c5’

- Disable CONFIG_XSCALE_CACHE_ERRATA (Workaround for XScale cache errata) option when build-
ing Linux kernel.

3.4.4 Freescale PowerQUICC Il Pro MPC83XX family

PEEDI supports debugging Linux kernel running on MPC8300 devices with MMU enabled. If the instruction
or data address translation is enabled (IR and DR bits set in MSR), PEEDI assumes all the addresses used
by gdb or the user in the console to be effective and need to be translated to physical ones before the very
memory access. First PEEDI ties a BAT translation, if it fails and the COREn_MMU_PTBASE parameter is
present in the target configuration file, then PEEDI tries a page translation on the given address.

The COREn_MMU_PTBASE parameter must point to a physical address which contains the virtual address
of the two pointers array:

Figure 13:

COREn_MMU_PTBASE }—»1 Address of the array }—» Address of swapper_pg_dir
Second (user) pointer

Before debugging the user must manually set all the pointers using mem write commands which can be put
in the INIT section for example.

Newer Linux kernels have built-in support for automatic update of the pointers, so no user setup is required,
only the COREn_MMU_PTBASE must be set to 0xF0, where the kernel puts the pointer to the array. But this
feature must be enabled in order to be used - 'make menuconfig’'—kernel hacking— Include BDI-2000 user
context switcher, here you can also set the Compile the kernel with debug info option.

Sometimes gdb and insight do not want to load the debug info because of an internal bug, in this case adding
’-gstabs+’ option in the makefile fixes this.

WARNING:

On some cores (MPC8349) in order the software breakpoints to work, the interrupt
m vectors must reside in valid memory. So you must either initialize the memory properly

or either set the MSR[IP] to a value so the vectors fall on a valid memory.

When the COREn_RCW CFG parameter is present, PEEDI overrides the Reset Configuration Words with

PEEDI User’s Manual 80 www.ronetix.at

http://www.ronetix.at

Using PEEDI

the values provided. This is useful when the RCW that is fetched during board reset does not suit the user’s
needs when debugging or programming the board using PEEDI.

The COREn_BOOT_ADDR CFG must be set considering the RCW that is fetched/set, because RCW sets
the reset vector address (the boot address).

If PEEDI reports '++ info: target does not enter debug mode, forcing halt’, this might mean that the CPU boots
from an address different than the one set by the COREn_BOOT_ADDR parameter. So you should check
again both COREn_RCW and COREn_BOOT_ADDR parameters.

3.4.5 Analog Devices Blackfin family

Most of the Blackfin devices can access only up to 4MB of external FLASH memory. Usually this limitation
is workarounded by connecting the free higher address pins of FLASH to PIO PFx pins of the CPU. So the
software running on the CPU must ensure the PFx pins are driven properly to access the desired part of the
FLASH. PEEDI also supports this kind or FLASH configuration making the work with such kind of configuration
just like as the FLASH is entirely visible. For more information see Section PLATFORM_BLACKFIN .

PEEDI supports programming of NAND flash chips connected to the CPU’s async bus or the NFC controller.
FLASH and Atmel DataFlash chips connected to the CPU’s SPI. For all these configurations PEEDI writes
only to the specific peripheral controller registers. It is the user’s responsibility to set the needed GPIOs in
the INIT section of the CFG file, i.e. to set the corresponding PORTx_FAR and PORTx_MUX registers so the
FLASH is accessible through async bus, NFC or SPI. For help on this check the sample CFG files from our
website.

It is observed that the presence of the ADI USB JTAG debug interface (BF535+Spartan FPGA), interferes the
normal PEEDI operation (seen with some EZ-KIT and STAMP boards). Some Blackfin boards do not work
reliably with low JTAG clock, so if you experience problems in the INIT section, please use 2MHz init JTAG
clock.

3.5 Boot sequence

On power-up if the front panel buttons are pressed, the bootloader is started. If not, PEEDI tries to load the
configuration file. After that it checks if the target is powered. Then if the RESET_TIME is bigger than 0 it
asserts the target RST and waits the specified time. After that if COREn_STARTUP_MODE is set to RESET,
PEEDI sets the target in debug mode, which assures that no instructions are executed when the target RST
is released. Next the target RST is released and PEEDI waits the TIME_AFTER_RESET. After that the initial
JTAG clock is set. If the COREn_STARTUP_MODE is RUN it switches to the normal JTAG clock and the
target is left running. Else it checks if the COREn_STARTUP_MODE is STOP and if yes it waits the specified
period and stops the target. Then the init section is processed. After that the JTAG clock is switched to its
normal speed.

Note that Different cores may have different COREn_STARTUP_MODE parameter set.

The following diagram shows the boot sequence:

PEEDI User’s Manual 81 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples
http://www.ronetix.at

Using PEEDI

Figure 14: Boot sequence

Power ON

Both front buttons

Start BOOT loader
pressed?

Get configuration file from
TFTP/FTP/MMC/EEPROM Power OFF

T

Target power up?

Assert target RST and
wait RESET_TIME

CORENn_STARTUP_MODE> Set debug mode

Release target RST

!
Wait TIME_AFETER_RESET
!
Set initial JTAG_CLOCK,

read CPU ID and
check EmbeddedICE logic,

yes
COREn_STARTUP_MOD

CORENn_STARTUP_MODE>
= STOP, period

Wait specified period

Stop target CPU and
read all registers

:
Process target INIT section
(if exists)
*
Set normal JTAG_CLOCK
(the seccond parameter of
JTAG_CLOCK)

1]
Process GDB/CLI requests

Power OFF

PEEDI User’s Manual 82 www.ronetix.at

http://www.ronetix.at

Using PEEDI

3.6 Multiple core support

Figure 15:

Target
[1

PEEDI

Target
[1 [1

Extra license SW-MULTIPROG is required to allow you to program multiple targets using only single PEEDI.
SW-MULTIPROG is required only when using ‘flash multi* sub-commands. The targets must be chained using

the multiple core cable adapter available from Ronetix:

WARNING:

All targets must have equal power supply (10% tolerance is permissible). The high-
m est power supply is taken for reference for the PEEDI output schematic, so the JTAG

signals will have that value.

WARNING:
You must use as short as possible cables, because the equivalent cable length is the
m sum of all cables. Even then, you may need to decrease the JTAG clock in the target

configuration file.

The JTAG_CHAIN parameter in the PLATFORM_ARM section must be correctly set and each core must be
described.

Example PLATFORM_ARM section describing two chained cores:

PEEDI User’s Manual 83 www.ronetix.at

http://www.ronetix.at

Using PEEDI

[PLATFORM_ARM]

JTAG_CHAIN = 4, 4 ; list of IR length of all TAP
controller in

; the JTAG chain

JTAG_CLOCK = 10, 12500 ; JTAG Clock in [kHz] - 10 kHz JTAG
clock for

; 1nit operations and 12.5MHz for normal work

TRST_TYPE = OPENDRAIN ; type of TRST output: OPENDRAIN
or PUSHPULL

STARTUP_TIME = AUTO ; wait until target reset pulse
finished

RESET_TIME = 20 ; length of RESET pulse in ms
COREO = ARM7TDMI, O ; TAP 0 is ARM7TDMI CPU
COREO_STARTUP_MODE = STOP, 300 ; Stop 300ms after reset
COREO_INIT = INIT_COREO ; init section for this core
COREO_BREAKMODE = soft ; use software breakpoints
COREO_BREAK_PATTERN = OxDFFFDFFF ; software breakpoint pattern
COREO_FLASHO = FLASH_COREO ; flash section for this core
COREO_ENDIAN = LITTLE ; core endian

COREO_WORKSPACE = 0xC00000, O0xEOQO ; workspace for FLASH programmer

CORE1l = ARM9TDMI, 1 ; TAP 1 is ARM9TDMI CPU

CORE1_STARTUP_MODE = RESET ; Stop immediately

CORE1_INIT = INIT_CORE1l ; init section for this core
CORE1_BREAKMODE = soft ; use software breakpoints
CORE1_BREAK_PATTERN = OxDFFFDFFF ; software breakpoint pattern
CORE1_FLASHO = FLASH_CORE1l ; flash section for this core
CORE1_ENDIAN = LITTLE ; core endian

CORE1_VECTOR_CATCH_MASK = 0x10 ; catch data abort exceptions
CORE1_WORKSPACE = 0xA00000,0x2600 ; workspace for FLASH programmer

Each core has its own TCP port number to wait for a debug session. The port number is the number specified
in the DEBUGER section of the target configuration file plus the number of the core. For example if the port
specified is 2000 and the core number is 2 (starting from 0), then you should connect to PEEDI for a debug
session at TCP port 2002:

(gdb) target remote 192.168.1.10:2000 // first target
(gdb) target remote 192.168.1.10:2002 // third target

Note:
0 The reset JTAG signal is common for all targets, so if one developer resets his target,
all targets will get reset.

When opening a CLI telnet session, the first core (number 0) is selected as default core. To select another
core to work with, use the core command:

Peedi> core #1

Using the flash multi program and flash multi erase CLI commands, you can program up to
four targets at once, saving huge amounts of time when many boards need to be programmed:

peedi> flash multi erase #0 #1
peedi> flash multi program #0 #1 tftp://192.168.1.1 myfile elf

This will program targets 0 and 1 simultaneously.

PEEDI User’s Manual 84 www.ronetix.at

http://www.ronetix.at

Using PEEDI

3.7 Script execution using the front panel inter-
face

You can define various command scripts in the configuration file and execute them using the front panel
buttons. Press the green button to choose the script you wish to execute, the LED indicator will show the
numbers associated with the available scripts, when ready with the choice press the red button to start the
script. While the script is being executed the LED indicator will rotate its segments to show that the execution
is in progress. When the script is successfully completed, the led indicator will show the chosen script and the
speaker will produce a single beep notifying the end of operation. If an error occurs during execution (some
of the commands exited with error code), the execution is terminated, the LED indicator will start to blink with
the error code, and the speaker will beep a number of times equal to the error code. Then you can start the
script again by pressing the red button. If you press the green button the display will show the current script,
pressing it again will show the next available script, so you can chose another script to execute. Here are the
available error codes:

TIMEOUT

NOT FOUND
INVALID ARGUMENT
GENERIC ERROR

AW N =

More information about the error can be obtained by connecting to PEEDI using telnet and then restarting the
script. Status messages are output to every opened telnet connection when a script is executed.

The scripts are defined in the following manner: in the [ACTIONS] section list all scripts that you want to define
in this format:

N = script_name

where N a hex number (1-9 and A-F) and is associated with the script_name, then define section named
[script_name] and put any number of commands, each command must be on a new line.

These scripts are useful when using PEEDI in autonomous (stand-alone) mode, not connected to a PC.
In such mode PEEDI can be used as a stand-alone FLASH programmer. If all needed files are stored on a
MMC/SD card no Ethernet cable is necessary and PEEDI will only need a power supply cable. If AUTORUN=N
parameter is specified, where N is number of a script, the given script will be executed every time a target is
connected to PEEDI. This eliminates the need to manually start the script, very useful and time saving when
large volumes of target boards need tobe programmed.

Example:

PEEDI User’s Manual 85 www.ronetix.at

http://www.ronetix.at

Using PEEDI

[ACTIONS]
AUTORUN=3

= prog_tftp_dump
= erase_program
= prog_tftp

= prog_card

= dump_tftp

= dump_card

@0 o> W N
|

[erase_program]
flash erase 0x400000 0x600000
flash prog tftp://192.168.1.41/main_romram.bin bin 0x400000

[prog_tftp]
flash prog tftp://192.168.1.41/main_romram.bin bin 0x400000 erase

[prog_tftp_dump]
flash prog tftp://192.168.1.41/dump.bin bin 0x400000 erase

[prog_card]
flash prog card://dump.bin bin 0x400000 erase

[dump_tftp]
memory dump 0x400000 0x100000 tftp://192.168.1.41/dump.bin

[dump_card]
memory dump 0x400000 0x100000 card://dump.bin

3.8 Serial Interface

PEEDI's RS232 connector is routed to a predefined TCP port (in the configuration file). This way if a telnet
connection is opened to that TCP port, the telnet application will receive each byte coming in through the
RS232 port. Vice versa, all data that is sent from the telnet application to the TCP port is forwarded to the
RS232 port. Note that no flow control is supported. You can use the normal command line telnet connection
to PEEDI simultaneously, as they work completely independent.

For information how to set serial port parameters, see section SERIAL in 'Target configuration file’ chapter.

3.9 ARM DCC Interface

On ARM targets, PEEDI routes the core’s DCC to a TCP port. This way if a telnet connection is opened to
that TCP port, the telnet application will receive each byte coming in through the DCC.

The TCP port to connect to, is the value specified for the COREn_DCC_PORT parameter in the target con-
figuration file.

You can use these GNU GCC compatible, simple C functions in your target code to communicate via the
DCC:

PEEDI User’s Manual 86 www.ronetix.at

http://www.ronetix.at

Using PEEDI

#define DCC_TX_BUSY 2
#define DCC_RX_READY 1

unsigned int dcc_recv_char (void)

{

unsigned int cc, status;

do _ _asm__ volatile ("mrc pl4,0, %0, cO,
cO0\n" : "=r" (status));

while (! (status & DCC_RX_READY));
__asm__ ("mrc pl4,0, %0, cl,

ed\m" g =¥ (ece))s

return cc;

}

void dcc_send_char(unsigned int cc)

{

unsigned int status;

do _ _asm__ volatile ("mrc pl4,0, %0, cO,

cO\n" : "=r" (status));
while (status & DCC_TX_ BUSY);

__asm__ ("mcr pl4,0, %0, cl1,

cO\n" : : "r" (cc));

}

voild dcc_send_string(const charx ss)
{

while (*ss) dcc_send_char(xss++);

}

Keep in mind that these are blocking functions.

3.10 Working with Insight/gdb

Since Firmware version v16.x.x sending of target descriptions to gdb via gXfer:features:read packet is sup-
ported and mandatory. PEEDI supports only GDB versions which implement this feature. GDB versions older
then v6.8 don’t implement it and are not supported by PEEDI.

To be able to debug an application with gdb the application must be compiled using the ’-g -O0’ options
to enable debugging and disable optimizing.

When your application is built and ready to be debugged, start gdb or insight:

$ arm-elf-gdb myapp

or

$ arm-elf-insight myapp

To connect to the target (assuming that your PEEDI is set to use IP 192.168.1.10) type in the console window:

(gdb) target remote 192.168.1.10:2000

This will tell GDB to connect to PEEDI using remote protocol. Now you can load your application into target’s
memory like this:

PEEDI User’s Manual 87 www.ronetix.at

http://www.ronetix.at

Using PEEDI

(gdb) load
This will load required application sections into target memory at addresses specified during the link process.
Users can manage these addresses using linker script files. While load command is being executed, gdb sets
PC to the entry point of the application. If you want to start execution from another point or just the real entry
point is different from the one set by gdb, you can manually set PC to a desired location like this:

(gdb) set $pc=0x200040
If you want to make sure that your application starts with all interrupts disabled, you can do this:

(gdb) set S$cpsr=0xD3

If your application utilizes stack and the startup code does not initialize the stack pointer you can do this
manually like this:

(gdb) set $sp=0x201000

Now your application is ready to be debugged:

(gdb) continue ; start the application
or

(gdb) si ; make single step

When finished debugging, you can leave gdb/insight in two ways - with or without resetting the target. To exit
resetting the target type:

(gdb) quit
Otherwise type

(gdb) detach
(gdb) quit

To make your life easier you may define various commands in a gdb init file and tell gdb to load that file when
starting like this:

$ arm-elf-insight -command=my_gdb_init
Assuming that PEEDI has IP 192.168.1.10, my_gdb_init file may contain something like this:

this will tell gdb to connect to PEEDI using remote protocol
target remote 192.168.1.10:2000

info target

the following will define a user command

define 11

set Scpsr=0xD3

load

end

3.11 Debugging Linux kernel

To debug the kernel you bootloader must be set to load and start the kernel successfully.

In the target configuration file set the COREn_STARTUP_MODE to RESET and in the INIT section add this
for all targets except Xscale:

PEEDI User’s Manual 88 www.ronetix.at

http://www.ronetix.at

Using PEEDI

break add hard 0x90000398 ;addr from 'nm vmlinux | grep start_kernel' go
; start CPU

wait 30000 stop ; wait 30 seconds to enter debug
break del all ; remove previously added watchpoint
beep 500 20 ; beep to signalize ready for debug

For Xscale targets use this:

break add watch Oxffff001C w 32 ; watch point on setting vectors

go ; start CPU

wait 30000 stop ; wait 30 seconds to enter debug
break del all ; remove previously added watchpoint
beep 500 20 ; beep to signalize ready for debug

This will set a break/watch in the beginning of the Linux kernel code and will start the kernel. This way after
target is powered the kernel will be started and a little later it will enter debug. At this point you can start
gdb/insight pointing the kernel ELF image file. Next you can use the target command to connect to PEEDI.
Make a si just for the gdb/insight to refresh its source window. Now you can set/remove breakpoints in you
source code, step-by-step examine the execution or issue continue to start the kernel after you have set all
the breakpoints you desire. If a break point is hit, gdb/insight will highlight the source line where the execution
has stopped.

3.12 Target OS thread awareness

PEEDI provides target OS thread awareness for systems that support Context Switching. Such system is
eCos for example. In these systems the Process Context is used to store information to be able to stop and
re-start the process later. Data structures in the form of Process Control Blocks are used to save the CPU
state to perform a process switch.

When debugging with GDB, the info threads command provides information for existing threads. PEEDI
can be configured to display the existing threads in the project. Before using info threads in the GDB
command window, you must first set a section in the target configuration file that tells PEEDI how to find the
tasks. This section includes addresses and offsets needed to be filled in order for PEEDI to be able to scan
the OS task list.

To obtain the correct OS information copy the configuration from the following link to the .gdbinit file of your
project.

http://download.ronetix.info/peedi/doc/os_scripts

Start your project with GDB and observe the console. The script prints information in the form of a configu-
ration file OS section. Use the script only once to obtain the section. For example to print the eCOS section
enter ecos in the GDB console.

See an example GDB command window below:

source .gdbinit

Oxfffffffc in ()

Loading section .rom_vectors, size 0x40 1lma 0x600000
Loading section .text, size 0x147a64 1lma 0x600040

PEEDI User’s Manual 89 www.ronetix.at

http://download.ronetix.info/peedi/doc/os_scripts
http://www.ronetix.at

Using PEEDI

Loading section .rodata, size 0x5dbb8 lma 0x747aa4
Loading section .data, size 0x6f10 1lma 0x7a565c
Start address 0x600040, load size 1754476
Transfer rate: 523 KB\sec, 15949 bytes\write
ecos

[OS_ECOS]

ITEM = int32_abs, BASE, Cyg_Scheduler_Base::current_thread, 0
ITEM = int32, NEXT, OxA4

ITEM = int32, PID, 0x4C

ITEM = str32, NAME, 0xA0, O

ITEM = reg32, RO, 0xC, 0xC

ITEM = reg32, R1, 0xC, 0x10

ITEM = reg32, R2, 0xC, 0x14

ITEM = reg32, R3, 0xC, 0x18

ITEM = reg32, R4, 0xC, 0x1C

ITEM = reg32, R5, 0xC, 0x20

ITEM = reg32, R6, 0xC, 0x24

ITEM = reg32, R7, 0xC, 0x28

ITEM = reg32, R8, 0xC, 0x2C

ITEM = reg32, R9, 0xC, 0x30

ITEM = reg32, R10,0xC, 0x34

ITEM = reg32, R11,0xC, 0x38

ITEM = reg32, R12,0xC, 0x3C

ITEM = reg32, sp, 0xC, 0x8

ITEM = reg32, lr, 0xC, 0x40

ITEM = reg32, pc, 0xC, 0x40

ITEM = reg32_abs, xpsr, 0x20010000

To enable the OS thread awareness in PEEDI first add a COREn_OS CFG parameter and set it to point to
the OS section like this:

CORE_OS = OS_ECOS ; section which contains the OS parameters
The following are example configuration files for eCos system.

[OS_ECOS]
ITEM = int32_abs, BASE, Cyg_Scheduler_Base::current_thread, 0
ITEM = int32, NEXT, O0xA4

ITEM = int32, PID, 0x4C

ITEM = str32, NAME, O0xAO0, O

ITEM = reg32, RO, 0xC, 0xC

ITEM = reg32, R1, 0xC, 0x10

ITEM = reg32, R2, 0xC, 0x14

ITEM = reg32, R3, 0xC, 0x18

ITEM = reg32, R4, 0xC, 0x1C

ITEM = reg32, R5, 0xC, 0x20

ITEM = reg32, R6, 0xC, 0x24

ITEM = reg32, R7, 0xC, 0x28

ITEM = reg32, R8, 0xC, 0x2C

ITEM = reg32, R9, 0xC, 0x30

ITEM = reg32, R10,0xC, 0x34

ITEM = reg32, R11,0xC, 0x38

ITEM = reg32, R12,0xC, 0x3C

ITEM = reg32, sp, 0xC, 0x8

ITEM = reg32, lr, 0xC, 0x40

ITEM = reg32, pc, 0xC, 0x40

ITEM = reg32_abs, xpsr, 0x20010000

PEEDI User’s Manual 90 www.ronetix.at

http://www.ronetix.at

Using PEEDI
3.13 Working with CLI (Command Line Interface)

PEEDI CLI allows you to:

e Perform simple debugging

You can load executable image into target RAM, get or set target memory or registers, put break and
watch points, start, step or stop the target. For more information, see the description of core, go,
breakpoint, step, halt, reset, info, memory commands.

e Program target flash

Full functional FLASH programmer is available, capable of programming different image file formats. For more
information, see the description of £1lash command.

e Manage files from various sources

While in CLI, you can copy files from and to local EEPROM and SD/MMC card or FTP, TFTP or HTTP servers.
You can create, remove and rename directories and files on the MMC/SD card. For more information, see the
description of transfer, card and eepromcommands.

3.13.1 File path convention

PEEDI can get files from local EEPROM and MMC/SD card or TFTP, FTP and HTTP server. It can store files
on all the previous locations except HTTP server. However the download speed from HTTP and FTP servers
is times faster than TFTP servers. FAT12, FAT16 and FA32 formatted MMC/SD cards are supported but there
is no support for long file names, so all files should be named using the 8+3 DOS name convention or using
names up to twelve characters.

This file path syntax can be used to point the desired location:

Note:

If the file path is skipped the per-core default path will be used. The default core’s path
0 is defined in the target configuration file using the COREn_PATH parameter. Full path

will be used in the entire manual for clear understanding.

Note:

If the IP address is skipped the default server IP will be used. The default server IP
0 can be set using the fconfig RedBoot command. Full path will be used in the entire

manual for clear understanding.

tftp://192.168.1.1/subdirectory/file
TFTP server 192.168.1.1 will be requested for /subdirectory/file

tftp:/subdirectory/file
TFTP default server IP will be requested for /subdirectory/file

PEEDI User’s Manual 91 www.ronetix.at

http://www.ronetix.at

Using PEEDI

ftp://user:password@192.168.1.1/subdirectory/file

FTP server 192.168.1.1 will be requested for subdirectory/file from the current working directory
right after the login of user with password

ftp://user:password@192.168.1.1//subdirectory/file

FTP server 192.168.1.1 will be requested for subdirectory/file from server root directory using user
and password credentials to login

ftp://192.168.1.1/subdirectory/file
FTP server 192.168.1.1 will be requested for subdirectory/file using user anonymous and password
guest to login

ftp:user:password/subdirectory/file
FTP default server IP will be requested for subdirectory/file from the current working directory right
after the login of user with password

ftp:user:password//subdirectory/file

FTP default server IP will be requested for subdirectory/file from server root directory using user
and password credentials to login

ftp:subdirectory/file
FTP default server IP will be requested for subdirectory/file from the current working directory right
after the login of user anonymous with password guest

ftp:/subdirectory/file
FTP default server IP will be requested for subdirectory/file from server root directory right after the
login of user anonymous with password guest

http://192.168.1.1/subdirectory/file
HTTP server 192.168.1.1 will be requested for /subdirectory/file

http://192.168.1.1:8080/subdirectory/file
HTTP server 192.168.1.1 at port 8080 will be requested for /subdirectory/file

http:/subdirectory/file
HTTP default server IP will be requested for /subdirectory/file

card://subdirectory/file
MMC/SD card will be searched for /subdirectory/file

eep://file
Local EEPROM will be searched for file. EEPROM file system if flat, i.e. directories are not sup-
ported. Keep in mind it has very limited storage space (tenths of kilobytes).

file
The default path to the file will be used, got from the COREn_PATH configuration parameter.

PEEDI User’s Manual 92 www.ronetix.at

http://www.ronetix.at

Using PEEDI

3.13.2 CLI commands

PEEDI has full functional telnet command line interface (CLI), which provides many useful commands. It has
vary easy to use help system and command auto complete, so instead of £1lash program you could type
only £1 pr, or you could just hit TAB to auto complete the command or subcommand. If you are unsure
about some command arguments - hit TAB again and the command help will be printed so you can continue
writing your command line.

An expression can also be used instead of a value in a command. The expression can include only the four
main math operations: +, -, * and /. And it is interpreted without priority from left to right (e.g. memory read
4%x0x1000-32 32).

help

Syntax:
help [COMMAND [SUBCOMMAND]]

Description:
Shows help about command or a subcommand.

Argument:
COMMAND - command which help will be shown
COMMAND SUBCOMMAD - subcommand which help will be shown

Example:
help

help halt
help flash program

transfer

Syntax:
transfer SOURCE DESTINATION

Description:
Copy file among TFTP, FTP, HTTP, MMC/SD and EEPROM.

Argument:
SOURCE - the source file to be copied
DESTINATION - where the file to be saved

Example:
transfer card://dump.bin tftp://192.168.1.1/dump.bin

- copy file from the mmc/sd card to a TFTP server

transfer dump.bin ftp://user:pass@192.168.1.1/dump.bin
- copy file from the EEPROM card to a FTP server

transfer http://192.168.1.1/dump.bin tftp://192.168.1.1/dump
- copy file from a HTTP server to a TFTP server

PEEDI User’s Manual 93 www.ronetix.at

http://www.ronetix.at

Using PEEDI

type

wait

core

Syntax:
type FILE

Description:
Show content of text file.

Argument:
FILE - text file to be shown

Example:
type ftp://myuser:mypass@192.168.1.1/target.cfg

Syntax:
wait MILISECONDS [stop]

Description:
Wait specified time period or wait target to stop with a given timeout. Useful when target

needs some delay while executing commands in INIT section of the target configuration
or script file.

Argument:

MILISECONDS - period to be waited in milliseconds. Actual resolution is 10

ms

Example:
wait 1000

wait 5000 stop

Syntax:
core [#CORE]

Description:
Show/set current core.

Argument:
#CORE - core number of desired core to be current

Example:
core

core #1

PEEDI User’s Manual 94 www.ronetix.at

http://www.ronetix.at

Using PEEDI

clock

run

Syntax:
clock init\normal|kHz
Description:
Switch JTAG/BDM target clock - init, normal or any desired frequency. This is useful
when the INIT section is too long and takes too much time. Using this command, you
can initialize in the beginning the system clock (the PLL) and then switch to normal clock.
This will allow much faster execution of the INIT section.
Argument:
init, normal or fre-_ desired clock to be used from now on
quency in kHz
Example:
clock init
clock normal
clock 3000
Syntax:
run #SCRIPT_NUMBER|$SCRIPT_NAME|SCRIPT_FILE
Description:
Execute script from the target configuration file or a file containing CLI commands.
Argument:
#SCRIPT_NUMBER - number associated with a scrip defined in the configuration
file
$SCRIPT_NAME - name of a scrip defined in the configuration file
SCRIPT_FILE - file, containing CLI commands to be executed
Example:
run #1

run card://myscript.cmd

PEEDI User’s Manual 95 www.ronetix.at

http://www.ronetix.at

Using PEEDI

go
Syntax:
go [ADDRESS|#CORE|#CORE=ADDRESS|#all]
Description:
Start current or specified core(s). If no address is provided the core(s) will start from its
current program counter (PC) value. If no core is specified, current core will be started. If
argument #all is provided, all cores will be started from their current PC values.
Argument:
ADDRESS - address to start from
#CORE - core to be started
#all - all cores will be started
Example:
go
go 0x100040
go #0
go #0=100040
go #0=100040 #2
go #all
gm
Syntax:
gm ADDRESS
Description:
This command is applicable only for CORTEX-M cores.
Set SP and PC and start CORTEX-M core: SP = [ADDRESS] and PC = [ADDRESS + 4]
Argument:
ADDRESS - address to load SP and PC from
Example:

gm 0x20400000

PEEDI User’s Manual 96 www.ronetix.at

http://www.ronetix.at

Using PEEDI

step
Syntax:
step [ADDRESS|#CORE|#CORE=ADDRESS|#all]
Description:
Step one instruction current or specified core(s). If no address is provided the core(s) will
steps from its current PC value. If no core is specified, current core will be stepped. If
argument #all is provided, all cores will be stepped from their current PC values.
Argument:
ADDRESS - address to step from
#CORE - core to be stepped
#all - all cores will be stepped
Example:
step
step 0x100040
step #0
step #0=100040
step #0=100040 #2
step #all
execute
Syntax:
execute OPCODE
Description:
Force CPU to execute specified instruction. Supported in MPC5500 targets only.
Argument:
OPCODE - opcode of instruction to be executed
Example:

execute 0x7C000724

PEEDI User’s Manual 97 www.ronetix.at

http://www.ronetix.at

Using PEEDI

set
Syntax:
set [coprocessor|spr|ctrl|cp0|tib] REGISTER VALUE
Description:
Set target CPU register. For more information about cp15 see info cpl5 command.
Argument:
REGISTER - name of register to set
VALUE - value to set
Example:
set r0 0x12345678 — set general purpose register
set ice8 0x12345678 - set ICE register 8
set dfsr 0x12345678 - ARM9: set CP15 instr. Data FSR
register using interpreted access
set cpl5 O0x51AF 0x123 — ARMY9: set CP15 instr. TTB
register using interpreted access
(bitl2=1)
set cpl5 0x000D 0x678 - ARM9: set CP1l5 Process ID register
using physical access (bitl12=0)
set MASO 0x1234 — PowerPC: set spr register by name
set spr 624 0x1234 — PowerPC: set spr register by number
set RAMBAR 0x0 — ColdFire: set control register by
name
set ctrl 0xCO05 0x0 — ColdFire: set control register by
address
set cp0 8 0x0 - MIPS: set control register by
number
set tlb word0 wordl — PPC4XX: set MMU TLB entry, the
word2 first command used clears all TLB
entries
halt
Syntax:
halt [#CORE|#all]
Description:
Stop current or specified core(s). If no core is specified, current will be stopped.
Argument:
#CORE - core to be stop
#all - all cores will be stopped
Example:
halt
halt #0
halt #all

PEEDI User’s Manual 98 www.ronetix.at

http://www.ronetix.at

Using PEEDI

reset

Syntax:
reset [detect|reset|run|stop [MILISECONDS]]

Description:
Hardware reset all core on the JTAG chain causing re-initialization of each core.
If no arguments are provided last used will be taken or the reset will be performed con-
sidering the CORE_STARTUP_MODE config parameter.
Disable/enable target reset detection.

Argument:
reset - reset and stop the target immediately
run - reset and leave the target running
stop MILISECONDS - reset and stop the target after specified time
detect 0 - disable the target reset detection
detect 1 - enable the target reset detection

Example:
reset
reset reset
reset run
reset stop 1000
reset detect 0
reset detect 1

reboot

Syntax:
reboot [redboot|watchdog]

Description:
Reboot PEEDI and reload the target configuration file and re-initialize all cores.

Argument:
redboot - Reboot and enter RedBoot command line.
watchdog - Enable PEEDI internal watchdog

Example:
reboot

reboot redboot
reboot watchdog

PEEDI User’s Manual 99 www.ronetix.at

http://www.ronetix.at

Using PEEDI

echo

Syntax:
echo TEXT

Description:
Display a line of text. Useful for printing info in scripts.

Argument:
The text to be displayed.

Example:
echo Initializing SDRAM...

jtag

Syntax:
Type jtag help in PEEDI command line for more information

Description:
Argument:

Example:

beep

Syntax:
beep FREQUENCY DURATION

Description:
Beep using given frequency and duration. Useful for signaling end of scripts execution.

Argument:
Frequency in Hz and duration in milliseconds

Example:
beep 1000 500

PEEDI User’s Manual 100 www.ronetix.at

http://www.ronetix.at

Using PEEDI

target

Syntax:
Target [detach|attach]

Description:
Set PEEDI debug interface in High-Z.

Argument:
detach/attach

Example:

target — show current interface state
target detach — set interface in High-2Z
target attach — set interface to normal mode

quit

Syntax:
quit

Description:
Quit telnet session.

Argument:
None

Example:
quit
info

Syntax:
info SUBCOMMAND

Description:
Show information about specified topic.

Argument:
SUBCOMMAND - subcommand specifying the needed information

Example:
info config

PEEDI User’s Manual 101 www.ronetix.at

http://www.ronetix.at

Using PEEDI

info flash

Syntax:
info flash

Description:
Show target FLASH configuration information.

Argument:
None

Example:
info flash

info registers

Syntax:
info registers [#CORE|#all] [all]
Description:
Show current CPU registers’ values of current, specified all cores.
Argument:
#CORE - core to show its registers’ values
#all - list all core registers’ values
all - list all modes registers’ values
Example:

info registers

info registers all

info registers #0

info registers #0 all
info registers #all
info registers #all all

info target

Syntax:
info target [#CORE]

Description:
Show general core information.

Argument:
None

Example:
info target

info target #0

PEEDI User’s Manual 102

www.ronetix.at

http://www.ronetix.at

Using PEEDI

info config

Syntax:
info config
Description:
Show JTAG configuration.
Argument:
None
Example:
info config
info ice
Syntax:
info ice [REGISTER] [#CORE|#all]
Description:
Display ICE Breaker registers
Argument:
Example:

info ice
info ice ice5
info ice 5

info cp15, info cp14

Syntax:
info cp15 [0xXXXX] [#CORE |#all]
info cp14 [0xXXXX] [#CORE |#all]
List current CP15 registers' values.

The ARM9 control coprocessor, cp15, provides additional registers that are used to
configure and control the caches, MMU, protection system, the clocking mode and other
system options.

Via JTAG, CP15 registers are accessed either direct (physical access mode) or via in-
terpreted MCR/MRC instructions.

ARMS920: Physical and Interpreted access mapping to CP15 registers

Register number for physical access mode (bit 12 = 0):

15 13 12 |11 9 8 7 5 4 3 0
00O 0 000 i 000 X CRn

The bit "i" selects the instruction cache (scan chain bit 33)
The bit "x" extends access to register 15 (scan chain bit 38)

Register number for interpreted access mode (bit 12 = 1):

PEEDI User’s Manual 103 www.ronetix.at

http://www.ronetix.at

Using PEEDI

15 13

12

11 8

7 5

3 0

opc_2

CRm

opc_2

CRn

The 16bit register number is used to build the appropriate MCR/MRC instruction.

CRm - Specified Coprocessor Action. Determines specific coprocessor action.

Its value is dependent on the CP15 register used.

For details, refer to CP15 specific register behavior.

CRn - Determines the destination coprocessor register.

opc_1 - Defines the coprocessor specific code. Value is ¢15 for CP15.

opc_2 - Determines specific coprocessor operation code. By default, set to 0.

ARM926: Physical access mapping to CP15 registers

13 11

10 8

7 4

3 0

Opc_1

Opc_2

CRn

CRm

ARM94x: Physical access mapping to CP15 registers

5 4 1 0
X CRn i

The bit "i" selects the instruction cache (scan chain bit 32)

The bit "x" extends access to register 6 (scan chain bit 37)

Argument:
Example:
info cpl5 — show all CP1l5 registers
info cpl5 0x51AF — ATM920: show inst. TTB register
using interpreted access (bitl2=1)
info cpl5 0x0109 — ARM920: show inst. cache lockdown
register using physical access (bitl12=0)
info cpl5 ittb
PEEDI User’s Manual 104 www.ronetix.at

http://www.ronetix.at

Using PEEDI

info spr

Syntax:
info spr NAME|NUMBER] [#CORE|#all]

Description:
List current SPR registers' values. PowerPC targets only.

Argument:

Example:
info spr
info spr PID
info spr 48

info ctrl

Syntax:
info ctrl NAME|ADDRESS]

Description:
List current control registers' values. ColdFire targets only.

Argument:

Example:
info ctrl

info ctrl RAMBAR
info ctrl 0xCO05

info breakpoint

Syntax:
info breakpoint [#CORE]

Description:
List all set break and watch points of current or a specified core.

Argument:
#CORE - core’s break and watch points to be listed

Example:
info breakpoint

info breakpoint #1

PEEDI User’s Manual 105 www.ronetix.at

http://www.ronetix.at

Using PEEDI

memory
Syntax:
memory SUBCOMMAND
Description:
Manage target memory. Subcommand must be provided.
Argument:
SUBCOMMAND - subcommand specifying the memory operation
Example:

memory read

memory read

Syntax:
memory read[TYPE ADDRESS [COUNT]]
Description:
Read and show target memory contents. If no arguments are provided last used will be
taken, ignoring ADDRESS and starting the listing with the next address to be listed after
the previous execution of memory read. Default first used arguments are 8 32-bit values
at address 0x00000000.
Argument:
TYPE - memory access
8 - value is 8-bits (byte long)
16 - value is 16-bits (half word long)
32 - value is 32-bits (word long)
64 - value is 64-bits (double word long)
$ - value is string
ADDRESS - where the value resides
COUNT - how many consecutive values to be listed, if not provided count 1
is assumed
Example:

memory read 0x1000
memory read8 0x1000
memory readl6é 0x1000
memory read32 0x1000
memory readé64 0x1000
memory read$ 0x1000
memory read 0x1000 8
memory read

PEEDI User’s Manual 106 www.ronetix.at

http://www.ronetix.at

Using PEEDI

memory write

Syntax:
memory write[TYPE ADDRESS VALUE [COUNT]]
Description:
Write target memory with specified value. If no arguments are provided last used will be
taken.
Argument:
TYPE - memory access
8 - value is 8-bits (byte long)
16 - value is 16-bits (half word long)
32 - value is 32-bits (word long)
64 - value is 64-bits (double word long)
$ - value is string
ADDRESS - where the value is to be written
VALUE - the very value
COUNT - how many consecutive values to be written, if not provided count
1 is assumed
Example:
memory write 0x1000 0x5555AAAA
memory writeS8 0x1000 0x5A
memory writel6é 0x1000 Ox55AA
memory write32 0x1000 Ox5555AAAA
memory write64 0x1000 O0x55555555AAAAAAAA
memory write$ 0x1000 "hi there’
memory write 0x1000 0x5555AAAA 8
memory write
memory or
Syntax:
memory or[TYPE] ADDRESS MASK
Description:
Make logical OR with, and apply to target memory.
Argument:
TYPE - memory access
8 - mask is 8-bits (byte long)
16 - mask is 16-bits (half word long)
32 - mask is 32-bits (word long)
64 - mask is 64-bits (double word long)
ADDRESS - where the value is to be written
MASK - mask to be used for the OR operation
Example:
memory or 0x1000 0x5555AAAA
memory or8 0x1000 Ox5A
memory orlé 0x1000 Ox55AA
memory or32 0x1000 Ox5555AAAA
memory or64 0x1000 O0x55555555AAAAAAAA
PEEDI User’s Manual 107 www.ronetix.at

http://www.ronetix.at

Using PEEDI

memory and

Syntax:
memory and[TYPE] ADDRESS MASK
Description:
Make logical AND with, and apply to target memory.
Argument:
TYPE - memory access
8 - mask is 8-bits (byte long)
16 - mask is 16-bits (half word long)
32 - mask is 32-bits (word long)
64 - mask is 64-bits (double word long)
ADDRESS - where the value is to be written
MASK - mask to be used for the AND operation
Example:
memory and 0x1000 Ox5555AAAA
memory and8 0x1000 0x5A
memory andlé 0x1000 O0x55AA
memory and32 0x1000 0x5555AAAA
memory andé64 0x1000 0x55555555AAAAAAAA
memory Crc
Syntax:
memory crc ADDRESS LENGTH [CRC]
Description:
Calculate or check CRC32 on a given memory region.
Argument:
ADDRESS - beginning of region
LENGTH - length of region
CRC - crc to check
Example:

memory crc 0x100000 1024
memory crc 0x100000 1024 0x1DF37A8C

PEEDI User’s Manual 108

www.ronetix.at

http://www.ronetix.at

Using PEEDI

memory load

Syntax:
memory load [FILE [FORMAT [OFFSETI]]
Description:
Load image file into target memory. If no arguments are provided last used will be taken.
Default first used arguments are taken from COREnN_FILE of target configuration file.
While file is loaded PC will be set at start of the image or at entry point if provided by the
image file.
Argument:
FILE - the image file to be loaded
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset
Example:

memory load tftp://192.168.1.1/image.bin bin 0x1000
memory load tftp://192.168.1.1/image.elf elf

memory multi load

Syntax:
memory multi load #COREQ ... #COREn FILE FORMAT [OFFSET]
Description:
Load image file into several targets simultaneously. If no arguments are provided last
used will be taken. Default first used arguments are taken from COREn_FILE of target
configuration file. While file is loaded PC will be set at start of the image or at entry point
if provided by the image file.
Argument:
#COREO
4COREn - cores to load the file to
Or #all
FILE - the image file to be loaded
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset
Example:

memory multi load #all tftp://192.168.1.1/image.bin bin 0x1000
memory multi load #0 #2 tftp://192.168.1.1/image.elf elf

PEEDI User’s Manual 109 www.ronetix.at

http://www.ronetix.at

Using PEEDI

memory verify

Syntax:
memory verify [FILE [FORMAT [OFFSET]]]
Description:
Verify target RAM with image file. If no arguments are provided last used with the memory
load command will be taken.
Argument:
FILE - the image file to be verified with
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset
Example:

flash verify tftp://192.168.1.1/image.elf elf
flash verify tftp://192.168.1.1/image.bin bin 0x1000

memory dump

Syntax:

memory dump ADDRESS LENGTH FILE
Description:

Dump target memory to a file. If no arguments are provided last used will be taken.
Argument:

ADDRESS - beginning of memory region

LENGTH - length of memory region

FILE - file to store the image. All path except HTTP server are accepted
Example:

memory dump 0 1024 tftp://192.168.1.1/ram.bin

memory test

Syntax:
memory test ADDRESS LENGTH

Description:
Test target RAM region.

Argument:
ADDRESS - beginning of memory region
LENGTH - length of memory region

Example:
memory test 0x100000 1024

PEEDI User’s Manual 110 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash

Syntax:
flash SUBCOMMAND

Description:
Manage target FLASH. Subcommand must be provided.

Argument:

SUBCOMMAND - subcommand specifying the FLASH operation

Example:
flash erase

flash set

Syntax:
flash set [FLASH]

Description:
Show/set current FLASH target section.

Argument:
FLASH - FLASH section number desired to be current

Example:
flash set

flash set 1

flash blank

Syntax:
flash blank ADDRESS [LENGTH]

Description:
Check FLASH region if it is blank, i.e. filled with OxFF. If no arguments are provided last

used will be taken. Default first used region is whole FLASH.

Argument:
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region, default is 1, if not supplied

Example:
flash blank 0x400000 0x1000

PEEDI User’s Manual 111 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash erase

Syntax:
flash erase ADDRESS [LENGTH]
flash erase chip
Description:
Erase all FLASH sectors that belong or overlap to the specified region. If no arguments
are provided last used will be taken. Default first used region is whole FLASH.
flash erase chip - erase using the CHIP ERASE command if supported from the
flash device.
Argument:
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region in bytes, default is 1, if not supplied
Example:
flash erase 0x400000 0x1000 flash erase chip
flash lock
Syntax:
flash lock ADDRESS [LENGTH]
Description:
If supported by FLASH, lock (protect against write/erase) all FLASH sectors that belong
or overlap to the specified region. If no arguments are provided last used will be taken.
Default first used region is whole FLASH.
Argument:
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region, default is 1, if not supplied
Example:

flash lock 0x400000 0x1000

flash unlock

Syntax:
flash unlock ADDRESS [LENGTH]

Description:
If supported by FLASH, unlock (unprotect against write/erase) all FLASH sectors that

belong or overlap to the specified region. If no arguments are provided last used will be
taken. Default first used region is whole FLASH.

Argument:
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region, default is 1, if not supplied

Example:
flash unlock 0x400000 0x1000

PEEDI User’s Manual 112 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash query

Syntax:
flash query ADDRESS [LENGTH]

Description:
If supported by FLASH, show the lock status of all FLASH sectors that belong or overlap

to the specified region. On NAND devices, show the bad block list. If no arguments are
provided last used will be taken. Default first used region is whole FLASH.

Argument:

ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region, default is 1, if not supplied

Example:
flash unlock 0x400000 0x1000

flash program

Syntax:
flash program [FILE [FORMAT [OFFSET] [erase]]]
Description:
Program image file into target FLASH. If no arguments are provided last used will be
taken. Default first used arguments are taken from FILE parameter of the currently se-
lected FLASH section in target configuration file.
Argument:
FILE - the image file to be programmed
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset
erase - if this argument is provided, all affected FLASH sectors will be
pre-erased upon programming
Example:

flash program tftp://192.168.1.1/image.elf elf erase
flash program tftp://192.168.1.1/image.elf elf 0x1000
flash program tftp://192.168.1.1/image.bin bin 0x1000

PEEDI User’s Manual 113 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash multi erase

Syntax:
flash multi erase #COREO ... #COREn [ADDRESS LENGTH)|chip]

Description:
Erase all FLASH sectors that belong or overlap to the specified region on into several
targets simultaneously. If no arguments are provided last used will be taken. Default first
used region is whole FLASH.

Argument:
#COREO - cores to erase

#COREnN Or #all
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region in bytes, default is 1, if not supplied

Example:
flash multi erase #all 0x400000 0x1000

flash multi erase #1 #2 0x400000 0x1000
flash multi erase #all chip

flash multi blank

Syntax:
flash multi blank #COREQ ... #COREn [ADDRESS LENGTH]

Description:
Check if blank all FLASH sectors that belong or overlap to the specified region on into
several targets simultaneously. If no arguments are provided last used will be taken.
Default first used region is whole FLASH.

Argument:
#COREO - cores to check

#COREnN Or #all
ADDRESS - beginning of FLASH region
LENGTH - length of FLASH region in bytes, default is 1, if not supplied

Example:
flash multi blank #all 0x400000 0x1000
flash multi blank #1 #2 0x400000 0x1000

PEEDI User’s Manual 114 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash multi program

Syntax:
g flash multi program #COREQ ... #COREn FILE FORMAT [OFFSET]
Description:
Program image file into several targets simultaneously. If no arguments are provided last
used will be taken. Default first used arguments are taken from FILE parameter of the
currently selected FLASH section in target configuration file.
Argument:
#COREO
e - cores to program
#COREnN Or #all
FILE - the image file to be programmed
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset.
Example:

flash multi program #0 #2 tftp://192.168.1.1/image.elf elf
flash multi program #all ftp://192.168.1.1/imge.bin bin 0x100

flash multi verify

Syntax:
g flash multi verify #COREO ... #COREn FILE FORMAT [OFFSET]
Description:
Check image file onto several targets simultaneously. If no arguments are provided last
used will be taken. Default first used arguments are taken from FILE parameter of the
currently selected FLASH section in target configuration file.
Argument:
#COREO
e - cores to program
#CORER Or #all
FILE - the image file to be programmed
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset.
Example:

flash multi verify #all tftp://192.168.1.1/image.elf elf
flash multi verify #0 #2 ftp://192.168.1.1/image.bin bin 0x100

PEEDI User’s Manual 115 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash verify

Syntax:
flash verify [FILE [FORMAT [OFFSET]]]
Description:
Verify target FLASH with image file. If no arguments are provided last used with the
flash programcommand will be taken.
Argument:
FILE - the image file to be verified with
FORMAT - format of image file:
bin - binary file
ihex - Intel HEX format
srec - Motorola S-record format
elf - ELF format
OFFSET - Must be provided for binary files because they don’t have any ad-
dress information. If provided with ihex, srec or elf formats, all the
code will be shifted regarding the specified offset
Example:
flash verify tftp://192.168.1.1/image.elf elf
flash verify tftp://192.168.1.1/image.bin bin 0x1000
flash dump
Syntax:
flash dump ADDRESS LENGTH FILE
Description:
Dump target FLASH to a file. If no arguments are provided last used will be taken.
Argument:
ADDRESS - beginning of memory region
LENGTH - length of memory region
FILE - file to store the image. All path except HTTP server are accepted
Example:

flash dump 0 1024 tftp://192.168.1.1/ram.bin

PEEDI User’s Manual 116 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash read
Syntax:
flash read [ADDRESS [COUNT]]
Description:
Read and show FLASH memory contents. Useful for NAND, SPI and DataFlash FLASH
types, i.e. chips which are not visible through the CPU memory map. For NOR chips the
memory read command may be used.
Argument:
ADDRESS - start address
COUNT - count in bytes
Example:
flash read 0x1000 8
flash read
flash info
Syntax:
flash info
Description:
Show target FLASH configuration information.
Argument:
None
Example:
flash info
flash find
Syntax:
flash find [SEARCHCRITERIA]
Description:
List specified or all chips in FLASH data base.
Argument:
SEARCHCRITERIA - used to filter listed output, ™ and *?’ wild characters are
also accepted
Example:

flash find
flash find AT49BV160
flash find *29F«*

PEEDI User’s Manual 117 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash test

Syntax:
flash test ADDR LENGTH

Description:
Currently implemented only for NAND Flash devices. The whole NAND Flash is erased
and then the given region is programmed and verified the with two patterns. At the end
the whole device is erased. The already existing bad blocks will be skipped, but the tested
area will be not expanded. The new detected bad blocks are listed, but not marked.

Argument:
ADDR - start address of the region to be tested
LENGTH - length in bytes including the spare bytes

Example:
flash test 0 2112%x64%*4

flash area

Syntax:
flash area add ADDR LENGTH
flash area delete
flash area list
flash area test [markbad]

Description:
Currently implemented only for NAND Flash devices. One or more test regions can be
added and then tested at once. The whole NAND Flash is erased and then the given
region is programmed and verified the with two patterns. At the end the whole device is
erased. The already existing bad blocks will be skipped, but the tested area will be not
expanded. The new detected bad blocks can be marked if the argument 'markbad’ is
applied.

Argument:
ADDR - start address of the region to be tested
LENGTH - length in bytes including the spare bytes

Example:

flash area add 0x00000000 2112%x64x4
flash area add 0x00010000 2112%x64x6
flash area delete

flash area 1list

flash area test

flash area test markbad

PEEDI User’s Manual 118 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this

Syntax:
flash this SUBCOMMAND

Description:
The £lash this command is used to execute FLASH specific subcommand available

only for the given FLASH. See below for the available commands.

Argument:
SUBCOMMAND - FLASH specific subcommand to be executed

Example:
flash this hidden enter|exit
flash this nvmbit BIT VALUE
flash this secure
flash this option BYTE VALUE
flash this write ADDRESS VALUEl .. VALUE1l4

flash this hidden

Syntax:
flash this hidden enter|exit

Description:
Enter/exit hidden ROM mode on some FLASH devices. Once the hidden ROM mode
is entered, the £lash erase and flash program commands can be used on the
hidden FLASH sector.

Argument:
enter - enter hidden ROM mode
exit - exit hidden ROM mode

Example:

flash this hidden enter
flash this hidden exit

flash this markbad

Syntax:
flash this markbad NUMBLOCK NUMBLOCK NUMBLOCK ...

Description:
NAND Flash - mark one or more blocks as bad.

Argument:
NUMBLOCK - number of block to be marked as bad

Example:
flash this markbad 5

flash this markbad 13 123 1365

PEEDI User’s Manual 119 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this nvmbit

Syntax:
flash this nvmbit BIT VALUE

Description:
Set/clear Atmel AT91SAM7 general purpose NVM bit.

Argument:
BIT - bit number
VALUE - 0 to clear or 1 to set the specified bit

Example:
flash this nvmbit 2 0

flash this nvmbit 2 1

flash this secure

Syntax:
flash this secure

Description:
Secure AT91SAM7 CPU.

Argument:
None

Example:
flash this secure

flash this option

Syntax:
flash this option erase
flash this option BYTE VALUE
Description:
Manage ST STM32F1 CPU option bytes.
Argument:
BYTE - byte number 0-7
VALUE - value to be written to the option byte
Example:
flash this option erase
flash this option 0 0xA5
PEEDI User’s Manual 120 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this option

Syntax:
flash this OPTCR_VALUE

Description:
Manage ST STM32F2 CPU option bits.

Argument:
OPTCR_VALUE - option bits value

Example:
flash this option OxOFFFAAEC

flash this write

Syntax:
flash this write ADDRESS BYTE1 .. BYTE14

Description:

Write 1 to 14 bytes at given EEPROM address.

Argument:
ADDRESS - address to write bytes to
BYTE1..14 - bytes to be written

Example:
flash this write

PEEDI User’s Manual 121

www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this part

Syntax:

flash this part VALUE

Description:

Used to program eMMC register PARTITION_CONFIG [179].

Argument:

VALUE

Example:

- register value

flash this part 0x48 - program partition configuration
register with value 0x48

PARTITION_CONFIG [179]:

bit

bit

6_
0x0
0x1
5:3
0x0
0x1
0x2
0x3
0x7
2:0

BOOT_ACK (R/W/non-volatile)

— No boot acknowledge sent (default)

- Boot acknowledge sent during boot operation
— BOOT_PARTITION_ ENABLE (R/W/non-volatile)

— Device not boot enabled (default)

- Boot partition 1 enabled for boot

— Boot partition 2 enabled for boot

- 0x6 - Reserved

— User area enabled for boot

— PARTITION_ACCESS: Automatically set by PEEDI

depending on parameter ’'PARTITION’
Use ’'flash info’ to see the current value of register [179]

flash this prot

Syntax:

flash this prot SUBCOMMAND

Description:

The £lash this prot command is used to execute FLASH reading or writing of pro-
tected registers only for the Intel Strata NOR flash. See below for the available com-
mands.

Argument:

SUBCOMMAND - FLASH specific subcommand to be executed

Example:

flash this prot read addr

flash this prot read addr count
flash this prot prog addr value
flash this prot help

PEEDI User’s Manual

122 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this prot read

Syntax:
flash this prot read [ADDRESS] [COUNT]

Description:
The flash this prot read command is used to execute FLASH reading of pro-
tected registers only for the Intel Strata NOR flash. See below for the available com-
mands.

Argument:
ADDRESS - Flash address to be read
COUNT - The number of registers to be read

Example:
flash this prot read 0x85 - read one protection register at
addr 0x85

flash this prot read 0x80 8 - read 8 protection registers at
addr 0x80

flash this prot program

Syntax:
flash this prot program [ADDRESS] [VALUE]

Description:
The flash this prot programcommand is used to execute FLASH writing of pro-
tected registers only for the Intel Strata NOR flash. See below for the available com-
mands.

Argument:
ADDRESS - Flash address to be programmed
VALUE - The value to be programmed

Example:

flash this prot prog 0x85 0xA5 - program one register at
address 0x85

flash this ppb

Syntax:
flash this ppb SUBCOMMAND

Description:
The £lash this ppb command is used to execute FLASH locking and unlocking us-

ing PPB (Persistent Protection Block) for Spansion NOR flash devices. See below for the
available commands.

Argument:
SUBCOMMAND - FLASH specific subcommand to be executed

Example:
flash this ppb query

flash this ppb unlock
flash this ppb lock addr
flash this ppb lock

PEEDI User’s Manual 123 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this isc_erase

Syntax:
flash this isc_erase [SECTOR_BITMASK]

Description:
The £lash this isc_erase command is used to erase STR9 ISC.

Argument:

SECTOR_BITMASK

Example:
flash this isc_erase - ISC full erase

flash this isc_erase 0x3 - ISC erase sector 0 and 1 of bank
0

flash this isc_conf_write

Syntax:
flash this isc_conf_write <VALUE>
Description:
The flash this isc_conf write command is used to write STR9 ISC.
Argument:
VALUE - value to be written
Example:
flash this isc_conf write 0x0001000000000000 - set bank 1 as
boot

flash this isc_conf read

Syntax:
flash this isc_conf_read

Description:
The flash this isc_conf read command is used to read current STR9 ISC.

Argument:
None

Example:
flash this isc_conf read

PEEDI User’s Manual 124 www.ronetix.at

http://www.ronetix.at

Using PEEDI

flash this isc_conf_boot_bank

Syntax:
flash this isc_conf_boot _bank <BANK>

Description:
The £flash this isc_conf_boot_bank command is used to set the STR9 device

boot bank .

Argument:
BANK - bank to boot from

Example:
flash this isc_boot_bank 0 - set booting from bank 0

flash this isc_boot_bank 1 - set booting from bank 1

flash this isc_conf _lock

Syntax:
flash this isc_conf_lock
Description:
The flash this isc_conf_lock command is used to lock the STR9 device.
Argument:
None
Example:
flash this isc_conf lock
breakpoint
Syntax:
breakpoint SUBCOMMAND
Description:
Manage target break and watch points. Subcommand must be provided.
Argument:
SUBCOMMAND - subcommand specifying the operation
Example:

breakpoint list

PEEDI User’s Manual 125 www.ronetix.at

http://www.ronetix.at

Using PEEDI

breakpoint add

Syntax:
breakpoint add ADDRESS

Description:
Set software break point. Unlimited number of software break points can be set.

If address -1 or OXFFFFFFFF is specified, only the ARM ICE registers will be set for
software breakpoints, but not actual breakpoint will be set. In this case the CPU will
break (enter debug) if the breakpoint pattern is met anywhere during the code execution.
Suitable to embed breaks in the source of the debugged application.

Argument:
ADDRESS - address of the break

Example:
breakpoint add 0x400040

breakpoint add -1

breakpoint add hard

Syntax:
breakpoint add hard ADDRESS

Description:
Set hardware break point. No more than two hardware break points can be set.

Argument:
ADDRESS - address of the break

Example:
breakpoint add hard 0x400040

breakpoint add watch

Syntax:
breakpoint add watch ADDRESS ACCESS TYPE
Description:
Set watch point. Unlimited number of watch points can beset.
Argument:
ADDRESS - address of value to be watched for access
ACCESS - access type to break on:
r - read access
w - write access
rw - any access
TYPE - type of watched value
8 - value is 8-bit (byte)
16 - value is 16-bit (half word)
32 - value is 32-bit (word)
Example:

breakpoint add watch 0x400040 32 r

PEEDI User’s Manual 126 www.ronetix.at

http://www.ronetix.at

Using PEEDI

breakpoint delete

Syntax:
breakpoint delete ID|all

Description:
Delete break or watch point.

Argument:

ID - id number of break or watch point desired to be removed, taken
using breakpoint list command
all - if provided all break and watch points will be deleted

Example:

breakpoint delete 7
breakpoint delete all

breakpoint list

Syntax:
breakpoint list [#CORE]

Description:
List all set break and watch points for the current or specified core.

Argument:
#CORE - core’s break and watch points to be listed
Example:

breakpoint list
breakpoint list #1

card

Syntax:
card SUBCOMMAND

Description:
Manage MMC/SC card files. Subcommand must be provided.

Argument:
SUBCOMMAND - subcommand specifying the operation

Example:
card dir

PEEDI User’s Manual 127 www.ronetix.at

http://www.ronetix.at

Using PEEDI

card cd

Syntax:
card cd DIRECTORY

Description:
Change current directory

Argument:
DIRECTORY - directory to make current

Example:
card cd mydir

card md

Syntax:
card md DIRECTORY

Description:
Make new directory.

Argument:
DIRECTORY - name of the directory to be made

Example:
card md mynewdir

card rd

Syntax:
card rd DIRECTORY

Description:
Remove directory. The directory must be empty.

Argument:
DIRECTORY - directory to be removed

Example:
card rd mydir

PEEDI User’s Manual 128 www.ronetix.at

http://www.ronetix.at

Using PEEDI

card dir
Syntax:
card dir [SEARCHCRITERIA|DIRECTORY]
Description:
Displays a list of files and subdirectories in a directory.
Argument:
SEARCHCRITERIA - string to filter printed output
DIRECTORY - directory which content to be listed
Example:
card dir
card dir *x.bin
card dir mydir
card copy
Syntax:
card copy SOURCE DESTINATION
Description:
Copy file.
Argument:
SOURCE - the source file to be copied
DESTINATION - file to be saved
Example:
card copy image.bin mydir/backup.bin
card type
Syntax:
card type FILE
Description:
Show content of text file.
Argument:
FILE - text file to be shown
Example:

card type target.cfg

PEEDI User’s Manual 129 www.ronetix.at

http://www.ronetix.at

Using PEEDI

card delete

Syntax:
card delete FILE

Description:
Delete file.

Argument:
FILE - file to be deleted

Example:
card delete target.cfg

card rename

Manage EEPROM files. EEPROM file system if flat, i.e. directories are not supported.
Keep in mind it has very limited storage space (tenths of kilobytes). Subcommand must

Syntax:
card rename FILE NEWNAME
Description:
Rename file.
Argument:
FILE - file to be renamed
NEWNAME - new file name
Example:
card rename image.bin backup.bin
eeprom
Syntax:
eeprom SUBCOMMAND
Description:
be provided.
Argument:
SUBCOMMAND - subcommand specifying the operation
Example:

eeprom dir

PEEDI User’s Manual 130

www.ronetix.at

http://www.ronetix.at

Using PEEDI

eeprom dir
Syntax:
eeprom dir [SEARCHCRITERIA]
Description:
Displays a list of files
Argument:
SEARCHCRITERIA - string to filter printed output
Example:

eeprom dir
eeprom dir *.txt

eeprom copy

Syntax:
eeprom copy SOURCE DESTINATION
Description:
Copy file.
Argument:
SOURCE - the source file to be copied
DESTINATION - file to be saved
Example:

eeprom copy target.cfg backup.cfg

eeprom type

Syntax:
eeprom type FILE

Description:
Show content of text file.

Argument:
FILE - text file to be shown

Example:
eeprom type target.cfg

PEEDI User’s Manual 131 www.ronetix.at

http://www.ronetix.at

Using PEEDI

eeprom delete

Syntax:
eeprom delete FILE

Description:
Delete file.

Argument:
FILE - file to be deleted

Example:
eeprom delete target.cfg

eeprom rename

Syntax:
eeprom rename FILE NEWNAME
Description:
Rename file.
Argument:
FILE - file to be renamed
NEWNAME - new file name
Example:

eeprom rename image.bin backup.bin

eeprom format

Syntax:
eeprom format

Description:
Format EEPROM file system erasing all files.

Argument:
None

Example:
eeprom format

PEEDI User’s Manual 132

www.ronetix.at

http://www.ronetix.at

Using PEEDI

eeprom alias

Syntax:
eeprom alias [ALIAS [MEANING]]
Description:
List or (un)define an alias.
Argument:
ALIAS - alias to be (un)defined
MEANING - alias meaning to be defined
Example:
eeprom alias
eeprom alias cl 'card dir’
eeprom alias cl ”
test
Syntax:
test FILE ADDR CRC32 COUNT
Description:
Load a file info the target memory, calculate the crc32 checksum and compare it with the
given CRC32. After every test loop the number of the loops and errors are printed.
Argument:
FILE - file to be loaded, only BIN format is supported
ADDR - address in the target memory where to be loaded the file
CRC32 - crc32 of the given file. In Linux this can be done with “crc32 FILE”
COUNT - number of test loops.
Example:

test abcd.bin 0x20000000 0x54327865 5

3.13.3 Using aliases

Aliases are very helpful and time saving when frequently using long commands with many arguments. For
example we can define an alias named £p for :

peedi> flash program tftp://192.168.1.1/dir/image.bin bin 0x100
and instead of writing the whole command with all its arguments we could only write:
peedi>%{fp}

Characters %f{} tell the command processor that an alias is closed between the brackets. Aliases are defined
using eeprom alias command like this:

peedi> eeprom alias fp ’flash program tftp://192.168.1.1/dir/image.bin bin
0x100"

Next time ${£p} is met, all defined aliases will be searched for £p, and the string will be interpreted as the
defined meaning of the alias. To un-define an alias you can:

PEEDI User’s Manual 133 www.ronetix.at

http://www.ronetix.at

Using PEEDI

peedi> eeprom alias fp ”

You could use an alias with combination of an argument like this:

peedi> ${fp} erase

Or define an argument or part of it as an alias:

peedi> eeprom alias myserver '192.168.1.17

and use it like this:

peedi> flash program tftp://%${myserver}/mydir/myimage.bin bin 0x100
or

peedi> eeprom alias myfile "tftp://192.168.1.1/mydir/myimage.bin’
and use it like this:

peedi> flash program ${myfile} bin 0x100

Or even you may define an alias using as base another alias because alias searching is recursive:

peedi> eeprom alias fpe ’"${fp} erase’

3.13.4 Using scripts

Scripts are useful when series of commands are frequently executed. For example loading and executing
image on the target:

peedi> memory load tftp://192.168.1.1/myimage.bin bin 0x20
peedi> set cpsr 0xD3

peedi> set sp 0x200

peedi> breakpoint add 0x8

peedi> go

Instead of typing all the commands you could create text file and put all command to be executed:

; MyScript.txt

memory load tftp://192.168.1.1/myimage.bin bin 0x20 ; load image

set cpsr 0xD3 ; disable interrupts
set sp 0x200 ; set stack
breakpoint add 0x8 ; set breakpoint

go ; start execution

Comments could be used in script files; command processor ignores everything after ’;” character to the end
of the line.

If some command returns error code script execution is interrupted and error message is issued. Aliases can
also be used in scripts.

Once the script file is ready it can be ran with run command:
peedi> run tftp://192.168.1.1/mydir/MyScript.txt

The script file could reside anywhere PEEDI could load a file - local EEPROM, MMC/SD card, TFTP, FTP,
HTTP servers.

PEEDI User’s Manual 134 www.ronetix.at

http://www.ronetix.at

Using PEEDI
3.14 Working with the FLASH programmer

PEEDI has built-in universal FLASH programmer. The programmer is used through the £1lash CLI com-
mands.

The programmer can program FLASH chips in two ways:
1. Directly - completely non intrusive, no target memory is used, but very slow.

2. Using small agent program which is downloaded to the target RAM (1KB) and uses configurable data buffer
(0.5-64KB).

So you can choose which is best suitable for your needs, but keep in mind that the "agent" method is much
faster. The programming method is set in the FLASH section of the target configuration file, where the
configurations are available - DIRECT, AGENT and AUTO - where first agent is tried, if failed the direct method
is used.

The image to program is not buffered to the PEEDI's RAM, but it is downloaded from a TFTP/FTP/HTTP
server or a MMC/SD card and programmed in configurable data blocks (0.5-64KB), which means that there

is no theoretical maximum size limit of the image to be programmed.

Using the programmer you can:

program the FLASH chip

verify the FLASH chip

- erase part or entire FLASH chip

blank check the FLASH chip

lock/unlock (if supported)

To erase the FLASH, type:

peedi> flash erase

this will erase the whole FLASH, to erase all sectors within specified FLASH region, type:

peedi> flash erase 0x200000 0x1000

To program the FLASH using the default arguments from the target configuration file, type:

peedi> flash program

To program the FLASH using specific file type in a given format to an exact address issue:

peedi> flash program tftp://192.168.1.1/mydir/myimage.bin bin 0x100

The address to program the image at must be aligned to the FLASH access width, i.e. if the FLASH is 16 bits
(2 bytes) accessible the address must be aligned by 2. If the FLASH is an Intel Strata the alignment must be
32 bytes. If the internal FLASH of an Atmel AT91SAMY series microcontroller is programmed, the alignment
must be equal to the FLASH page size (128 or 256 bytes). If the internal FLASH of a Philips LPC2000 series
microcontroller is programmed, the alignment must 256 bytes.

After the flash is programmed, you can verify it by:

peedi> flash verify

PEEDI User’s Manual 135 www.ronetix.at

http://www.ronetix.at

Using PEEDI

or
peedi> flash verify tftp://192.168.1.1/mydir/myimage.bin bin 0x100

Note:

Most of the flash commands if executed without arguments, will take the last used ar-
0 guments. If executed for first time they will take their default arguments. For more

information on how to use the FLASH programmer, please see the flash CLI com-

mands.

3.15 Multiple FLASH support

The PEEDI FLASH programmer supports targets with multiple FLASH chips mapped at different addresses.
Every FLASH must be described in separate section in the target configuration file. If multiple FLASH
chips/configurations are present on the target each chip/configurations must be described in different sec-
tion (see section PLATFORM_ARM). If single FLASH chip/configuration is used the ‘'m’ integer number may
be skipped. When working with the programmer the first FLASH is selected as current by default. To work on
another FLASH, use the £1lash set command to select it. The multiple FLASH support could also be used
to describe different profiles for the same FLASH, for example with different program method type or different
image file specified. This way you can easy switch to the desired profile using the £1lash set command

3.16 Working with a MMC/SD memory card

As mentioned before PEEDI can operate autonomously i.e. without an Ethernet and a host computer. This is
achieved by storing all necessary files (target configuration, image, script and other files) into a MMC or SD
memory card.

WARNING:
If PEEDI is set to get its network settings from a DHCP server and if the Ethernet cable
A is unplugged or there is no DHCP server on the Ethernet, it may take some minutes for
. PEEDI to boot. To avoid this, make sure PEEDI can reach a DHCP server or set it to
use a static IP address.

PEEDI can not format a MMC/SD card. The card must be FAT file system formatted in order to use it with
PEEDI. There are two ways to copy the necessary files to the memory card. First is to use a MMC/SD card
reader and a PC to copy the files. The second way, when no card reader is available is to copy the needed
files using the PEEDI CLI transfer command, for this purpose you will also need a FTP, TFTP or HTTP
server to copy the files from.

peedi> transfer tftp://192.168.1.1/mydir/MyFile.txt card://myfile.txt

The transfer command can also be used to copy files from the memory card to any file server on the
Ethernet.

Before actually copy the files, you may need to create some directories, delete old files or something else. To
do this use the PEEDI CLI card subcommands.

3.17 JTAG cable adapters

PEEDI is packed with one suitable JTAG adapter for connecting to a target system.

PEEDI User’s Manual 136 www.ronetix.at

http://www.ronetix.at

Using PEEDI

There are several target adapters available upon request:

- 10-pin - for Cortex targets

- 14-pin - for MIPS 32, TI OMAP, Freescale PowerPC MPC5500 and Analog Devices Blackfin targets
- 16-pin - for Freescale Power QUICK Il Pro MPC83xx, Freescale Power QUICC Il - MPC85xx targets
- 20-pin - for ARM targets

- 26-pin - for Freescale ColdFire MCF52xx,MCF53xx, MCF54xx targets

For additional information refer to: http://www.ronetix.at/peedi-list—-adapters.html

Figure 16:
Adapter JTAG cable

Target
PEEDI —]

All adapters are mounted on the PEEDI JTAG connector and next the target cable is connected to the given
adapter:

The ARM20 adapter has standard ARM pinout and may be used with almost all ARM evaluation boards.

The ARM10 adapter has no standard pinout, but it is useful when the target JTAG cable connector has to be
small.

The ARM14 adapter is used for some old ARM evaluation boards.

If your target JTAG connector pinout is not standard, you may need to make your own target cable considering
the PEEDI JTAG connector pinout.

The 4xARM20 adapter is used when you want to take advantage of the multiple core support. The adapter
automatically shorts the unused JTAG connector pins to chain the available targets, so there is no need to set
jumpers manually.

Figure 17:

Target
[1

PEEDI

Target
[1

3.18 PEEDI licenses

PEEDI needs some licenses to operate. Each license unlocks specific feature of PEEDI. Licenses are kept
in and loaded from the [LICENSE] section of the target configuration file. You must load the licenses you
have acquired before you start using PEEDI. The minimum required licenses are provided when PEEDI is
purchased and are printed on the bottom side of PEEDI. Also new units are set to load the target configuration
file from the EEPROM, where we have put the file and the licenses.

PEEDI User’s Manual 137 www.ronetix.at

http://www.ronetix.at/peedi-list-adapters.html
http://www.ronetix.at

Using PEEDI

The UPDATE_DDMMMYYYY license allows you to update PEEDI firmware to version signed to DDMM-
MYYYY date. This is the date when your ’firmware warranty’ expires (see Warranty). If you update your
PEEDI with firmware released after that date, your PEEDI will refuse to work. You can recover from this sit-
uation either loading older firmware or acquire a new update license, so please contact your distributor if the
UPDATE license has expired and you need to update PEEDI firmware.

To acquire a license, we need your PEEDI serial number, which is sent over the RS232 port when PEEDI
boots or printed when you connect to PEEDI telnet CLI. The PEEDI serial number should look like this - 'SN:
PD-1234-5678-90AB’. After we receive it, we will send you the license, which should look like this - '"KEY =
DESCRIPTION, 1234-5678-90AB-C’. You have to insert that string in a new line in the [LICENSE] section of
you target configuration file and reboot PEEDI.

If the license is not meant for this PEEDI, it will be simply skipped, this means that multiple PEEDIs may load
single shared target configuration file, just fill in all PEEDISs’ licenses.

PEEDI User’s Manual 138 www.ronetix.at

http://www.ronetix.at

Specifications

4 Specifications

JTAG Clock 5kHz - 33MHz
Adaptive Clocking

Target Voltage 1.2V - 5.0V

Network Interface Ethernet 10/100 BaseT

Serial Interface RS232

Power supply 5V/1A

reverse polarity protection
overvoltage protection up to 100V
6.9V overvoltage shutdown

Robust Aluminum case:

Dimensions 115x105x35 mm
Weight 2709

LEDs:

Power Red

Target Power Red

Ethernet Status Orange

JTAG Status Green

Buttons:

On front panel

Two: red and green

On back panel

One: red

1/0 Ports:

JTAG Header 2x10 2.54mm
pitch

Standard ESD Human Body Model IEC 1000-4-2, Direct Discharge

densing

> 4kV
RJ45 Dielectric Withstand Voltage: 1500 VAC
RS232 ESD Protection Exceeds £15 kV Using Human-Body Model
Power Jack 2.Tmm
GNDC.+_5V 2.5-kV Human-Body-Model, 500-V CDM
Electrostatic Discharge Protection
Operating temperature +5°C ... +60°C
Storage temperature -20°C ...+80°C
Relative humidity, non con- < 90%

4.1 JTAG Target connector signals

Figure 18:

Note:
0 Each signal JTAG pin has a 10k pull-up.
PEEDI User’s Manual 139 www.ronetix.at

http://www.ronetix.at

Specifications

Pin Name Type Description
1.2V -5.0V
Target reference voltage: used to create the logic-level ref-
1 Vcc Target Input erence for the input comparators. It also controls the output
logic levels to the target. It is normally fed from Vcc 1/0O on
the target board.
2 GND
JTAG Clock
8 TeK Output Connects to the target TCK line
4 GND
JTAG TDI
5 TDI Output Test Data In signal from PEEDI to the target JTAG port. Con-
nects to the target TDI line.
6 GND
JTAG TMS
7 ™S Output Connects to the target TMS line.
8 GND
9 GDBRQ Output Controlled from a parameter in config file
10 GND
JTAG TDO
11 TDO Input Test Data Out signal from the target to PEEDI Connects to
the target TDO line
12 GND
Returned JTAG Clock
13 RTCK Input Connects to the target RTCK line
14 GND
15 GDBACK Input Not Used
16 GND
17 Reserved
18 GND
Push-Pull or | JTAG Reset
19 TRST Open Drain | Resets the JTAG TAP controller on the target. Driver type is
output specified in config file
. RESET
20 RST Open Drain Resets the target system

4.2 RS232 Connector (DB9F, female)

Figure 19:

ST

PEEDI User’s Manual

140 www.ronetix.at

http://www.ronetix.at

Specifications

RS232 connector pin configuration

Pin

Description

Not connected

Tx

Rx

Not connected

Ground

Not connected

CTS

RTS

O (N |W|IN|—

Not connected

4.3 Schematics

JTAG cable adapter schematics can be found here:

http://download.ronetix.info/peedi/doc/schematics/

PEEDI User’s Manual

141

www.ronetix.at

http://download.ronetix.info/peedi/doc/schematics/
http://www.ronetix.at

FAQ

5 FAQ

Q: What is JTAG?

A: This is a standardized high-speed serial interface, IEEE 1149, widely used for programming and debugging
programmable logic and processors. It is non-intrusive, runs regardless of the state of the processor, and
gives access to processor registers, memory, and other resources.

Q: What is TAP Controller?

A: The TAP controller provides access to many of the test support functions built into the JTAG-compliant
device. The TAP is a state machine. The state machine controls all operations for one JTAG-compliant
device. Each JTAG-compliant device has its own TAP controller. You can sequence through the state machine
functions via the TCK and TMS inputs.

Q: What is EmbeddedICE?
A: EmbeddedICE is an extension to the core architecture and provides the ability to do in-circuit-emulation
with deeply embedded cores.

The EmbeddedICE macrocell, adds a JTAG TAP controller and breakpoint/watchpoint logic to the ARM mi-
crocontroller which can be accessed externally through a JTAG port. Hence, software debug is facilitated
by interfacing these JTAG pins of the micro to the host development system containing the ARM software
development tools through a JTAG interface device such as PEEDI.

Q: What is PEEDI?

A: The PEEDI (Powerful Embedded Ethernet Debug Interface) is a debugging and development tool that
provides the user the ability to see what is taking place in the target system, and control its behavior. The
PEEDI probe provides the debug services that the debugger uses to perform debug operations. It receives
command packets over the communication link, and translates them into the JTAG operations that are needed
to provide the specific service. First, it can control the operation of the target processor and target system.
What does it mean to 'control’ the target? In most cases it means to start and stop the processor's execution
of instructions at arbitrary points in a program, examine and store values in the processor’s registers, and
examine and store program code or data in the target system’s memory.

Q: What is debugging?

A: Debugging is the process of removing bugs from computer programs. On one end of the spectrum,
debugging means staring at your source code until you see the bug. An infinitely more effective method is to
use a special program called a "debugger".

Q: What is a debugger?

A: A debugger is a program that runs other programs. A debugger lets the user (programmer) stop running
the program at any time and poke around internally. You can examine and change memory contents, call
functions, and look at system registers. Besides all these fun things, a debugger can be used to fix your
programs

Q: How to set gdb to work with PEEDI?
A: First compiled your application with the ’-g -O0’ option to enable debugging. Next start gdb pointing your
application:

$ arm-elf-insight myapp
To connect to the target (assuming that your PEEDI is set to use IP 192.168.1.10) type in the console window:
(gdb) target remote 192.168.1.10:2000

This will tell GDB to connect to PEEDI using remote protocol. Now you can load your application into targets
memory like this:

(gdb) load

PEEDI User’s Manual 142 www.ronetix.at

http://www.ronetix.at

FAQ

And your application is ready for debugging:

(gdb) continue ; start the application
or
(gdb) si ; make single step

Q: What is Eclipse?

A: The Eclipse IDE is a complete integrated development platform similar to Microsoft's Visual Studio. Origi-
nally developed by IBM, it has been donated to the Open-Source community and is now a massive world-wide
Open-Source development project.

Q: What is Cygwin?

A: Cygwin is a free Linux-like environment for Windows. It works on all Windows 32-bit OS versions since
Windows 95 except Windows CE. Cygwin is not a way to run native Linux apps on Windows. Applications
must be rebuilt from source code to get it running on Windows.

Q: What is Cygwin/X?

A: Cygwin/X is a port of the X Window System to the Microsoft Windows family of operating systems. Cyg-
win/X runs on all recent consumer and business versions of Windows; as of 2003-12-27 those versions are
specifically Windows 95, Windows 98, Windows Me, Windows NT 4.0, Windows 2000, Windows XP, and
Windows Server 2003. For more information see http://x.cygwin.com .

Q: What are GNU cross-development tools?
A: Atoolchain is a collection of software tools used for the development and building of software for a particular
target architecture. The GNU toolkit consists of the following software utilities:

- GCC - an ANSI C compiler
- G++ - an ANSI tracking C++ compiler
- GDB - source and assembly language command line debugger

GAS - GNU assembler

LD - GNU linker

- Insight - a graphical user interface for GDB

For more information see http://www.gnu.org .

Q: How to enter RedBoot command line?

A: First restart PEEDI holding front panel buttons pressed, this way RedBoot will not execute its boot script
and the main PEEDI application will not be loaded. Then you can access the command line via the RS232
port using suitable terminal application capable of opening the serial PC RS232 port or via telnet connecting
to the port specified by the fconfig command.

Q: How to update PEEDI firmware?
A: See 'Firmware update procedure’.

Q: How to set target configuration file path?
A: Enter RedBoot command line and use either £config or config commands.

Example:
config new_target_cfg file path

Q: How to set the network configuration of PEEDI?
A: Enter RedBoot command line and use £config command.

PEEDI User’s Manual 143 www.ronetix.at

http://www.ronetix.at

FAQ

Q: Why PEEDI has a display and two buttons on the front panel?
A: These are used to select, start and observe the execution of user defined scripts which contain PEEDI
commands. Those scripts are defined in the target configuration file, for more information see 'Using scripts’.

Q: How big image can PEEDI program?

A: The image to program is not buffered to the PEEDI's RAM, but it is downloaded from a TFTP/FTP/HTTP
server or a MMC/SD card and programmed in configurable data blocks (0.5-64KB). Which means, there is no
theoretical maximum size limit of the image to be programmed.

Q: PEEDI does not connect to a Philips LPC2XXX device. What should | do?
A: First make sure the pull-down resistor that enables the JTAG interface is not more than 1k and second
verify that the CORE_STARTUP_MODE parameter gives the device at least 100ms to run.

Q: Whende buging mixed ARM/Thumb code using gdb/insight the debugger can not step in from ARM to
Thumb function. What to do?

A: Use the si (step one instruction) command in the gdb/insight several times to step-in to the desired Thumb
function.

PEEDI User’s Manual 144 www.ronetix.at

http://www.ronetix.at

Glossary

6 Glossary

A
Alias
Agent

B
Breakpoint

Big-endian

C

CLlI

Cygwin
Current core

D
Default server
DCC

GDB

Host

Hardware breakpoint

Insight
Image

JTAG

M
MMC/SD card

- User defined alias of a command including its arguments.

- Small program downloaded into the target, which is used for faster
operations.

- A user-defined point where execution stops so that a debugger can
examine the state of memory and registers.

- Memory organization where the least significant byte of a word is
at the highest address and the most significant byte is at the lowest
address in the word.

- Command Line Interface.
- Linux-like runtime environment for Windows.

- The core which is set to be current, i.e. default when no core is
specified.

- Default server address used when no server is specified.

- Debug Communication Channel, communication channel over the
JTAG.

- The GNU Debugger.

- A computer that provides data and other services to another com-
puter. Especially, a computer providing debugging services to a target
being debugged.

- A breakpoint that is implemented using non-intrusive additional hard-
ware. Hardware breakpoints are the only method of halting execution
when the location is in Read Only Memory (ROM). Using a hardware
breakpoint often results in the processor halting completely. This is
usually undesirable for a real-time system.

- Graphical User Interface of GDB.

- An executable file that has been loaded onto a processor for execu-
tion.

- Type of interface which enables direct access to most CPU re-
sources.

- Multi Media or Secure Digital memory card, used to store files.

PEEDI User’s Manual

145 www.ronetix.at

http://www.ronetix.at

Glossary

P

PC - Program Counter, CPU register that holds the address of the next
instruction to be executed.

R

RedBoot - The Red Hat boot loader used for update, setting some configuration
parameters or to load and launch the PEEDI executable image.

S

Script - List of CLI commands executed one by one until the last or until an
error is returned.

T

Target configuration file - File used to describe target specifics loaded at boot-up.

PEEDI User’s Manual 146 www.ronetix.at

http://www.ronetix.at

PEEDI Package contents

7 PEEDI Package contents

Make sure all the items listed below are present, when opening the PEEDI package:

- PEEDI
- Power adapter 5V / 1A
- JTAG or BDM cable and adapter

Patch cable CAT5, 2m

Serial cable, 1:1, 2m

PEEDI User’s Manual 147 www.ronetix.at

http://www.ronetix.at

Warranty

8 Warranty

RONETIX warrants PEEDI to be free of defects in materials and workmanship for a period of 36 months
following the date of purchase when used under normal conditions.

In the event of notification within the warranty period of defects in material or workmanship, RONETIX will
replace defective PEEDI. The remedy for breach of this warranty shall be limited to replacement and shall not
encompass any other damages, including but not limited loss of profit, special, incidental, consequential, or
other similar claims. RONETIX specifically disclaims all other warranties - expressed or implied, including but
not limited to implied warranties of merchantability and fitness for particular purposes - with respect to defects
in PEEDI, and the program license granted herein, including without limitation the operation of the program
with respect to any particular application, use, or purposes. In no event shall RONETIX be liable for any loss
of profit or any other commercial damage, including but not limited to special, incidental, consequential, or
other damages. Failure in handling which leads to defects are not covered under this warranty. The warranty
is void under any self-made repair operation except exchanging the fuse.

RONETIX warrants PEEDI firmware for a period of 12 months following the date of purchase, i.e. every
reported bug will be fixed and an update will be made available.

PEEDI User’s Manual 148 www.ronetix.at

http://www.ronetix.at

Appendix A: Sample target configuration files

A Sample target configuration files

Please use this link to download the most recent version of the sample target configuration files:

http://download.ronetix.info/peedi/cfg_examples

PEEDI User’s Manual 149 www.ronetix.at

http://download.ronetix.info/peedi/cfg_examples
http://www.ronetix.at

	1 Introduction
	1.1 PEEDI in the development process
	1.1.1 Single developer environment
	1.1.2 Multiple developers environment

	1.2 PEEDI in the manufacturing process
	1.2.1 PEEDI as a standalone FLASH programmer
	1.2.2 PEEDI as a device tester
	1.2.3 High productivity with the Multi Core feature

	2 Installation
	2.1 Hardware installation
	2.1.1 Connection instructions

	2.2 Software installation

	3 Using PEEDI
	3.1 PEEDI interface
	3.2 Setup with RedBoot
	3.2.1 RedBoot Configuration
	3.2.2 Firmware update procedure
	Update via RS232
	Update via Ethernet

	3.2.3 RedBoot commands used with PEEDI
	fconfig
	update
	memtest

	3.3 Configure PEEDI
	3.3.1 Network configuration
	3.3.2 Target configuration file
	Section LICENSE
	Section DEBUGGER
	 PROTOCOL
	 REMOTE_PORT
	 FLASH FLASHn

	Section TARGET
	 PLATFORM

	Section PLATFORM_ARM
	Global parameters for all ARM cores
	 JTAG_CHAIN
	 JTAG_CLOCK
	 JTAG_TDO_DELAY
	 TRST_TYPE
	 RESET_TIME
	 WAKEUP_TIME
	 TIME_AFTER_RESET
	 WDKICK_TIME
	 DBGREQ_OUTPUT
	Core specific parameters
	 COREn
	 COREn_STARTUP_MODE
	 COREn_INIT
	 COREn_FLASHm
	 COREn_ENDIAN
	 COREn_VECTOR_CATCH_MASK
	 COREn_BREAKMODE
	 COREn_BREAK_PATTERN
	 COREn_WORKSPACE
	 COREn_DATASPACE
	 COREn_DCC_PORT
	 COREn_PATH
	 COREn_FILE
	 COREn_LOCKOUT_RECOVERY
	 COREn_OS

	Section PLATFORM_ARM11
	 COREn
	 COREn_USE_FAST_DOWNLOAD
	 COREn_DCC_PORT

	Section PLATFORM_Cortex-M & Section PLATFORM_Cortex-M_SWD
	 COREn
	 PERIODIC_TASK
	 COREn_SWO
	 COREn_PROFILING

	Section PLATFORM_Cortex-A
	 COREn

	Section PLATFORM_XSCALE
	 COREn
	 COREn_USE_FAST_DOWNLOAD
	 COREn_DEBUG_HANDLER_ADDR
	 COREn_VECTOR/RELOCATED_UNDEF/SWI/PABORT/DABORT/RES/IRQ/FIQ

	Section PLATFORM_MPC5200
	 COREn
	 COREn_BOOT_ADDR
	 COREn_MEMDELAY

	Section PLATFORM_MPC5500
	 COREn
	 COREn_NEXUS3_ACCESS
	 MPC5XXX_AUX_TAP_CMDCOREn_AUX_TAP_CMD

	Section PLATFORM_MPC8300
	 COREn
	 COREn_BOOT_ADDR
	 COREn_RCW
	 COREn_MMU_PTBASE

	Section PLATFORM_MPC8500
	 COREn
	 COREn_MMU_TRANS
	 COREn_MMU_PTBASE

	Section PLATFORM_QorIQ_P
	 COREn
	 COREn_REGLIST
	 COREn_MMU_TRANS
	 COREn_MMU_PTBASE
	 COREn_PMEM_BASE

	Section PLATFORM_PPC400
	 COREn

	Section PLATFORM_COLDFIRE
	 BDM_CLOCK
	 CORE
	 CORE_MEMMAP

	Section PLATFORM_BLACKFIN
	 COREn
	 COREn_VMEM
	 COREn_VMEM_WINDOW
	 COREn_VMEM_PINS
	 CORE_MEMMAP

	Section PLATFORM_MIPS
	 COREn

	Section PLATFORM_AVR32
	 COREn
	 COREn_BLOCK_ACCESS

	Section INIT
	Section FLASH
	NOR FLASH programming
	I2C Programming
	SPI FLASH programming
	NAND FLASH programming
	OneNAND FLASH programming
	MMC/SD card programming
	Atmel SAM3/SAM4 programming
	Atmel AVR32UC3 programming
	Freescale Kinetis programming
	TI/Luminary LM3S programming
	NXP LPC2000 programming
	Nordic Semiconductor nRF51 ans nRF52 programming
	Freescale MAC7100 programming
	Freescale ColdFire V2 programming
	Freescale MPC5000 programming
	ST STM32 programming
	ST STR7 programming
	ST STR9 programming
	TI TMS570 programming
	TI TMS470 programming
	PIC32, SmartFusion A2F, ADuC, EFM32 programming
	 CHIP
	 PART_ID
	 PARTITION
	 BANK
	 CHECK_ID
	 ACCESS_METHOD
	 CHIP_WIDTH
	 CHIP_COUNT
	 CHIP_SIZE
	 BASE_ADDR
	 FILE
	 SPI_MODE
	 AUTO_ERASE
	 AUTO_LOCK
	 CPU_CLOCK
	 SECURE_FLASH
	 SET_VECTORS_CHECKSUM
	 DATA_BANK
	 BANK_SIZE
	 F2F4_PSIZE
	 PROTECTION_KEY0 - PROTECTION_KEY3
	 ALLOW_ZERO_KEYS
	 CPU
	 SPI_DIV
	 nSPI
	 nCS
	 SPI_SPCK SPI_MISO SPI_MOSI SPI_CS
	 CMD_BASE
	 DATA_BASE
	 ADDR_BASE
	 CS_ASSERT/RELEASE ALE_ASSERT/RELEASE CLE_ASSERT/RELEASE
	 BAD_BLOCK_TABLE
	 BAD_BLOCKS
	 ERASE_BAD_BLOCKS
	 SWAP_BI
	 OOB_INFO
	 DAVINCI_UBL_DESCIPTOR_MAGIC
	 DAVINCI_UBL_DESCIPTOR_ENTRY_POINT
	 DAVINCI_UBL_DESCIPTOR_LOAD_ADDR
	 DAVINCI_UBL_MAX_IMAGE_SIZE
	 NUM_ECC
	 HEADER
	 IPS_BASE
	 SPIFI_BASE
	 NCB_DATA
	 LDLB_DATA
	 SERIAL_NUM
	 I2C_ADDR
	 I2C_DELAY
	 SDA_SET SDA_CLR SDA_IN SDA_OUT SDA_READ SCL_SET SCL_CLR
	 CS_ASSERT CS_RELEASE SCLK_SET SCLK_CLR MOSI_SET MOSI_CLR MISO_READ

	Section OS
	 ITEM

	Section SERIAL
	 BAUD
	 STOP_BITS
	 PARITY
	 TCP_PORT

	Section TELNET
	 PROMPT
	 BACKSPACE

	Section DISPLAY
	 VOLUME

	Section ACTIONS

	3.4 CPU specific considerations
	3.4.1 Philips LPC2000 family
	3.4.2 ST STM32 family
	3.4.3 Intel XScale family
	3.4.4 Freescale PowerQUICC II Pro MPC83XX family
	3.4.5 Analog Devices Blackfin family

	3.5 Boot sequence
	3.6 Multiple core support
	3.7 Script execution using the front panel interface
	3.8 Serial Interface
	3.9 ARM DCC Interface
	3.10 Working with Insight/gdb
	3.11 Debugging Linux kernel
	3.12 Target OS thread awareness
	3.13 Working with CLI (Command Line Interface)
	3.13.1 File path convention
	3.13.2 CLI commands
	help
	transfer
	type
	wait
	core
	clock
	run
	go
	gm
	step
	execute
	set
	halt
	reset
	reboot
	echo
	jtag
	beep
	target
	quit
	info
	info flash
	info registers
	info target
	info config
	info ice
	info cp15, info cp14
	info spr
	info ctrl
	info breakpoint
	memory
	memory read
	memory write
	memory or
	memory and
	memory crc
	memory load
	memory multi load
	memory verify
	memory dump
	memory test
	flash
	flash set
	flash blank
	flash erase
	flash lock
	flash unlock
	flash query
	flash program
	flash multi erase
	flash multi blank
	flash multi program
	flash multi verify
	flash verify
	flash dump
	flash read
	flash info
	flash find
	flash test
	flash area
	flash this
	flash this hidden
	flash this markbad
	flash this nvmbit
	flash this secure
	flash this option
	flash this option
	flash this write
	flash this part
	flash this prot
	flash this prot read
	flash this prot program
	flash this ppb
	flash this isc_erase
	flash this isc_conf_write
	flash this isc_conf_read
	flash this isc_conf_boot_bank
	flash this isc_conf_lock
	breakpoint
	breakpoint add
	breakpoint add hard
	breakpoint add watch
	breakpoint delete
	breakpoint list
	card
	card cd
	card md
	card rd
	card dir
	card copy
	card type
	card delete
	card rename
	eeprom
	eeprom dir
	eeprom copy
	eeprom type
	eeprom delete
	eeprom rename
	eeprom format
	eeprom alias
	test

	3.13.3 Using aliases
	3.13.4 Using scripts

	3.14 Working with the FLASH programmer
	3.15 Multiple FLASH support
	3.16 Working with a MMC/SD memory card
	3.17 JTAG cable adapters
	3.18 PEEDI licenses

	4 Specifications
	4.1 JTAG Target connector signals
	4.2 RS232 Connector (DB9F, female)
	4.3 Schematics

	5 FAQ
	6 Glossary
	7 PEEDI Package contents
	8 Warranty
	A Sample target configuration files

