
C/C++ Development Toolkit User Guide

This guide provides instructions for using the C/C++ Development Toolkit (CDT) in the workbench.

Getting Started
Concepts
Tasks
Reference

Before you begin
What's new

Before you begin

You must install and configure the following utilities:

● Build (such as make).
● Compile (such as gcc). For more information, see http://gcc.gnu.org.
● Debug (such as gdb). For more information, see http://sources.redhat.com/gdb/.

Tip: Cygwin contains these utilities for a Windows environment. For more information, see http://www.
cygwin.com.

To test if cygwin was installed correctly open a command prompt and type g++ or make.

The following error message means that no make is installed or your path is not configured correctly.

'g++' (or 'make') is not recognized as an internal or external
command, operable program or batch file

To check your path open a command prompt and type PATH. Make sure that the path to your build
utility is defined (example PATH=c:\cygwin\bin).

CDT Home

http://gcc.gnu.org/
http://sources.redhat.com/gdb/
http://www.cygwin.com/
http://www.cygwin.com/

What's new in the CDT?

What's New in 2.0

Enhanced Performance

Builds can now be performed in the background.

Searches can now be performed in the background.

Automatic Project Settings Discovery

Automatically generate project defines and include paths settings from the C/C++ > New Make
Projects > Discovery Options project settings.

C/C++ File Types

Define specific files, especially C++ headers without extensions, using the C/C++ File Types global
preferences or project property.

Multiple Architecture Project Support

Building from multiple binary formats? Choose the appropriate formats using the Binary Parser project
option.

Editor Hyperlink Naviagation

Enable the editor hyperlink navigation and then you can use Ctrl+click to jump to the declaration of an
item on the C/C++ editor.

Indexer Error Markers

Enable C/C++ indexing and indexer error reporting in the C/C++ Indexer properties. This helps identify
projects missing path configuration information.

Rename Refactoring Support

Use the Outline or the C/C++ Editor Refactor > Rename context menu to refactor class & type names,
methods, function & member names.

Open Type

Use Open Type to open up the declaration of C/C++ classes, structures, unions, typedefs, enumerations
and namespaces.

Automatic Refresh

Configure the default behavior of the automatic retrieval of shared library and register information in the
C/C++ debugger.

Improved Managed Make

You can now set the compiler command for managed projects.

Improved Standard Make

Standard Make now parses response from Make command to populate paths and symbols.

Support for GNU

Now supports some of the GNU extensions to the ANSI specification.

Improved View and Browsing Features

You can now open Include files from the Outline View.

You can now perform selection searches from the C/C++ Editor

Improved Search

Search now supports external files referenced using #include.

Makefile Outline View

You can now browse the structure of your Makefile in Outline View.

Content Assist Enhancements

Content Assist now produces proposals from classes and structure members, local & global variables,
pre-processor defines, pre-processor commands.

Content Assist now supports C++.

What's New in 1.2

Find out what's new in CDT 1.2.

C/C++ Search

You can search the projects in your workspace for references to, declarations or definitions of, particular
elements. Only header files referenced by a source file in your workspace are included in a search.

Build

Managed build

You can now create a Managed build and have makefiles generated for you.

Error parser

The error parsers are now extension-points that can contributed by other plug-ins. The error parsers are
used to detect errors or warnings or informational messages from compilers, linkers, etc... during a build.

New Global preferences for all Standard Make Project properties

Make builder options

Support changing/enabling default make targets for each workbench build type. New default build
location setting.

Make project options

You can now make changes the Error Parser Configuration. You can change the order in which error
parsers are applied or disable them entirely.

You can also specify which paths to include during a Make and customize preprocessor symbols to
ensure proper indexing and search capabilities.

Notes:
There are a number of "build error parsers" (the things that turn compiler error messages into objects
that we can put into the error lists). If one parser cannot figure out what the message means, then the
system moves to the next one in the list.

Make target

Make targets now support Stop on error build option and ability to change the default build command.

New Standard Make projects

Old Standard Make projects will be automatically updated to support the new options. If update is
declined, then selecting Update Old Make project... from the context menu of the project will update the
project to a new Standard Make project.

Debug

Formatting of variables and expressions

You can now select the number system (natural, decimal, hexadecimal) used to display variables and
expressions.

Variable view, detail pane

In the Variable view, a detail pane has been added to let you see the value of a selected variable. This is
practical when looking at a string (char *).

Casting of variables, expressions and registers

In the Variable view, a variable can be cast to a different type or be restored to its original type. Also, a
pointer can be cast to an array type.

Debug disable variable query

The value of variables are queried at every step.

This can be time-consuming on certain embedded targets. The automatic query of variables can be
disabled. Manual queries are now an option.

Source location

A new source locator in the Run/Debug dialog box makes it possible to add directories to search,
mapping, and the order of the search.

GDB/MI new shared library launch pane

For GDB/MI code, two new actions are added in the launch view, stop-on-solib and auto-load-symbols.
Stop-on-solib will force the debugger to stop on any shared library events. Auto load will load the
symbols for any shared library.

GDB/MI improvements in display of arrays

Arrays are now separated into ranges, to limit the possibility of a timeout on large arrays.

What's new for previous releases

You can keep track of previous release-specific developments in the CDT.

For more information, see http://www.eclipse.org/cdt/ > CDT Project Management/Plans. The
Official CDT Plans section lists previous releases.

http://www.eclipse.org/cdt/

Getting Started

How to bring C/C++ source into Eclipse
Updating the CDT

CDT Home

How to bring C/C++ source files into Eclipse

A common scenario that you may encounter when starting to use the CDT, is determining how to bring
existing C/C++ source files into Eclipse. There are a number of ways to do this. The scenarios described
below are recommended approaches.

Create a project from CVS

If your existing source tree is managed in CVS, you can use the CVS Repository perspective to
"Checkout As..." any folder in the repository. The first time you "Checkout As...", the New Project
wizard is launched and you need to create a C or C++ project for the folder. For more information, see
Creating a project and Working with C/C++ project files.

A CVS checkout of the project into the project's location occurs. It is recommended that you eventually
add and commit the CDT project files back into CVS. The CDT project files include .project, .cdtproject
and .cdtbuild (for Managed Build projects) and are located at the root folder of each CDT project.

Create new projects from existing source roots

If your resource code is not managed in CVS but is available from the file system, then you need to
perform two steps:

1. Identify a "root folder" of your source code tree.
2. Create a new C/C++ project using the New Project Wizard, and specify the "root folder" as a non-

default location of the new project.

Typically existing projects will have their own makefiles, so you should create a new Standard Make C/
C++ project. For more information see Creating a project and Working with C/C++ project files.

To help you to identify a root folder for your project, consider the following guidelines:

● all source code for the project is available on or beneath the root folder
● the build results are also produced in or beneath the root folder
● there is often a makefile in the root folder. In complex projects, the makefile in the root folder

calls other makefiles in other directories to produce the build results.
● external header files and library files do not need to be in or beneath the root folder.

The resources for the project are maintained in the remote location specified, not in the workspace folder
for Eclipse. However, your existing folder structure is displayed in the C/C++ Projects view. Meta data

for the project, such as the index for the project and the link to the existing source, is stored in the
metadata directory in the workspace folder. For more information on the workspace folder, see
Workbench User Guide > Tasks > Upgrading Eclipse.

Once you create a CDT project, you cannot easily move it or redefine its root folders. If you need to, you
can delete the CDT project (without deleting its contents) and then recreate it specifying a different non-
default location.

Import your C/C++ source file system

Another approach would be to create a C/C++ Project and then import your existing file system. For
more information, see Workbench User Guide > Tasks > Importing > Importing resources from the
file system.

This approach copies the files from your file system to an Eclipse Workbench project or folder. Your
original source files remain unchanged and it is the copies of the files that will be edited, built and
debugged using the CDT. When you have successfully imported your existing file system, the folder
structure is displayed in the C/C++ Projects view. Again, you should identify an appropriate "root
folder" to import from.

Tip:

● Importing your existing file system can consume significant disk space depending on the size of
your files.

● Your files may become detached from an existing source control system that previously
referenced the original file location such as a ClearCase view.

Overview of the CDT
 CDT Projects

Working with C/C++ project files

Project properties

Updating the CDT
The CDT can be updated directly from the workbench using your internet connection.

1. Click Help > Software Updates > Find and Install.

2. In the Feature Updates window select Search for new features to install and click Next.

3. If you have not updated previously, you will have to enter the location of the CDT Install site. Click the Add

Update Site... button.

4. In the New Update Site dialog box, enter a name and the URL for the update site in the spaces provided.

5. Select the update site you just created by clicking the appropriate checkbox and click Next.

6. A dialog box will appear showing the updates available from the update site, select each of the following

features, ensuring you have precisely the same version for each one:
❍ Eclipse C/C+ Development Tooling SDK
❍ Eclipse C/C+ Development Tools

Then click Next.

7. You should now see the Eclipse.org Software User Agreement, you must accept the agreement to install the

CDT update. Do so by selecting I accept the terms in the license agreement and then click Next.

8. Now select the location you would like the updates installed, usually this is the directory where you installed

Eclipse, and click Finish.

9. You will now start downloading the CDT components. You will have to verify that you want the features

installed by clicking Install for each feature you selected.

10. You will now have to restart Eclipse, select Yes to complete the update.

CDT Overview
C/C++ Development perspective

Concepts

Provides background information for CDT components, tasks and objectives.

CDT Overview
CDT Projects
Perspectives available to C/C++ developers
Views in the C/C++ perspective
Coding aids

Comments
Content Assist
Templates

Editing C/C++ Files
C/C++ editor
C++
Makefile

Navigation aids
Outline View
Project File views
Make Targets View
Open declaration
Open Type
Class Browser
Heirarchy View

Build
Building C/C++ Projects
Manage Build Extensibility Document

Debug
Breakpoints
Debug overview
Debug information
Error Parsing
Invoking Make

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Searching External Files

CDT Overview

The C/C++ Development Toolkit (CDT) is a set of Eclipse plug-ins that provide C and C++ extensions
to the Eclipse workbench. For more information about Eclipse, see Workbench User Guide >
Concepts > Workbench.

The CDT provides a C/C++ IDE that simplifies many of the same tools that you can use from the
command line. The CDT can also communicate with many external utilities and interpret their
responses, for example:

● Build (such as make).
● Compile (such as gcc). For more information, see http://gcc.gnu.org.
● Debug (such as gdb). For more information, see http://sources.redhat.com/gdb/.

Note: while make, gcc and gdb are the examples used in the documentation, virtually any similar set of
tools or utilities could be used.

The CDT opens as the C/C++ perspective of the Eclipse workbench. The C/C++ perspective consists of
an editor and the following views:

C/C++ Projects
Shows your C/C++ projects and files.It operates in much the same way as the Navigator.

Console
Displays your program's output, as well as the output from your build and external tool chain.

Editor
The C/C++ editor view provides specialized features for editing C/C++ related files.

Make Targets
Enables you to select the make targets you want to build in your workspace.

Navigator
Shows all of the file system's files under your workspace directory.

Outline
Displays the structure of the file currently open in an editor.

Problems View
If you encounter any errors during a build they will be displayed in the Problems view.

Properties
Shows the attributes of the item currently selected in a view or an editor.

Search
Shows the results of searches for files or text.

Tasks
Lists tasks that you want to keep track of, either as a schedule of things to do or a history of

http://gcc.gnu.org/
http://sources.redhat.com/gdb/

things that have been done.

For more information, see Workbench User Guide > Concepts > Perspectives.

CDT updates

The Install/Update wizard provides information about your current Eclipse installation and provides the
framework to manage your updates. For more information, see Workbench User Guide > Tasks >
Updating features with the update manager.

To view a list of the updates available for the toolsets that you installed, click Help > Software Updates
> New Updates.

Additional information

For more information on the Eclipse CDT project, refer to http://www.eclipse.org/cdt/:

● CDT newsgroup: The place to ask questions about how to use the CDT.
● User FAQ: Provides answers to the most common questions about using the CDT.
● Developer Documentation: Provides feature and design specifications for building and extending

the CDT.
● CDT Community Webpage: Showcases plug-ins and tools developed by and for the CDT

Community. If you have tools or plug-ins that you would like to submit to the CDT Community
Page, use the CDT Development Mailing List or the Eclipse Tools CDT newsgroup.

License

The CDT is an open source project and is licensed under the Common Public License.

Working with existing code
What's new

Views

http://www.eclipse.org/cdt/
news://www.eclipse.org/eclipse.tools.cdt
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/user/faq.html?cvsroot=Tools_Project
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/developer/docs.html?cvsroot=Tools_Project
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/community.html?cvsroot=Tools_Project
http://www.eclipse.org/legal/cpl-v05.html

CDT projects

Before you can work in the CDT, you must create a project to store your source code, makefiles,
binaries, and related files. C/C++ projects are displayed in the C/C++ Projects view.

Tip: Nested projects are not supported. Each project must be organized as a discrete entity. Project
dependencies are supported by allowing a project to reference other projects that reside in your
workspace. For more information, see Selecting referenced projects.

For more information about projects and where they are stored, see:

● Workbench User Guide > Tasks > Resources
● Workbench User Guide > Tasks > Running Eclipse

Project types

You can create a standard make C or C++ project or a managed make C or C++ project.

Standard make C or C++ project

You need to create a makefile in order to build your project or use an existing makefile.

Managed make C or C++ project

A managed make project generates the makefile for you automatically. In addition, the files module.dep
and module.mk are created for every project sub-directory. These files are required for your managed
make projects to build successfully.

Project conversion

You can convert projects from C to C++ (or from C++ to C). If, for example, your requirements change
and you must convert an existing C project to C++, you can do this without recreating the project. The
CDT converts your project files and resolves any source control issues.

A few notes about projects

● When you create a file within a project, a record (local history) of every change is created. For
more information about local history, see Workbench User Guide > Reference > User

interface information > Development environment > Local history.
● Spaces in projects and filenames can cause problems with some tools, such as the make utility or

the compiler.
● Be careful when you use only case to distinguish files and projects. UNIX-based operating

system file names are case sensitive, but Windows filenames are not. Therefore, Hello.c and hello.
c are separate files in UNIX but overwrite each other in Windows.

For more information about projects, see Workbench User Guide > Concepts > Workbench >
Resources.

Project file views
How to bring C/C++ source into Eclipse

Working with C/C++ project files
Converting a C or C++ nature for a project

Project properties
Views

Perspectives available to C/C++ developers

A perspective is a layout of views (development tools) in the Workbench window. Each type of
perspective is a combination of views, menus, and toolbars that enable you to perform a particular task.
For example, the C/C++ perspective has views that are organized to help you develop C/C++ programs;
the Debug perspective has views that enable you to debug those programs.

Selecting / Opening Views:

● You can add views to a perspective. From the menu bar choose Window > Show View > Other
and select a new view from the Show View dialog.

● To reset the current perspective to its original layout, from the menu bar choose Window > Reset
Perspective.

The C/C++ development tools contribute the following perspectives to the workbench:

C/C++ perspective views

This perspective is tuned for working with C/C++ projects. By default it consists of an editor area and
the following views:

● C/C++ Projects (the file navigator for C/C++ resources)
● Navigator (the file navigator for all Eclipse resources)
● Console
● Properties
● Tasks
● Make Targets
● Outline
● Search

Debug perspective views

This perspective is tuned for debugging your C/C++ program. By default it includes an editor area and
the following views:

● Debug
● Variables
● Breakpoints
● Expressions

● Registers
● Memory
● Display (for use with JDT only)
● Outline
● Console
● Tasks

Other Perspectives

In addition to the perspectives named above and the Resource perspective (which you see when you first
start Eclipse), Eclipse also has perspectives that are tuned to other types of development:

● Java
● Java Browsing
● Plug-in Development.
● CVS Repository Exploring

Views in the C/C++ perspective
Debug Concepts

Adding breakpoints

Console view

Views in the C/C++ perspective

The C/C++ views are panels that help you perform the tasks involved in creating C/C++ programs. The
C/C++ perspective displays these panels in a single Eclipse window.

Changing Views:

● You can add views to a perspective. From the menu bar choose Window > Show View > Other
and select a new view from the Show View dialog.

● To reset the current perspective to its original layout, from the menu bar choose Window > Reset
Perspective.

The following views are commonly used in the C/C++ perspective:

C/C++ Projects
Displays, in a tree structure, only elements relevant to C and C++ projects.

Console
Displays your program's output, as well as the output from your build tools.

Editor
The C/C++ editor view provides specialized features for editing C/C++ related files.

Make Targets
Enables you to select the make targets you want to build in your workspace.

Navigator
Shows all of the file system's files under your workspace directory.

Outline
Displays the structure of the file currently open in an editor.

Problems View
If you encounter any errors during a build they will be displayed in the Problems view.

Properties
Shows the attributes of the item currently selected in a view or an editor.

Search
Shows the results of searches for files or text.

Tasks
Lists tasks that want to keep track of, either as a schedule of things to do or a history of things
that have been done.

CDT Overview
C/C++ perspectives

Views

Coding aids

This section provides information on code entry aids.

Comments
Content Assist
Templates

Comments

Comments are lines in a source file that have been marked to be ignored by the compiler. Two styles of
comments are supported by current C/C++ compilers:

● /* text */
● // text

Comment

You can quickly comment out one or more lines of code by inserting the leading characters // at the
beginning of the line. To do so, select the line (or lines) of code you want to comment out and press
CTRL+/ (slash).

Uncomment

To uncomment select the line (or lines) of code, and press CTRL+\ (backslash).

Tip: The characters /* */ on lines that are already commented out, are not affected when you
comment and uncomment code.

Multiline comment

You can use the Content Assist feature to insert a multi-line comment before a function. Type com
+Ctrl+Space, and the following code is entered at the cursor location:

/*
 * author userid
 *
 * To change this generated comment edit the template variable
"comment":
 * Window>Preferences>C>Templates.
 */

To change the default comment click Window > Preferences > C > Templates. For more information
see the Content Assist section.

Content Assist and code completion

Customizing the C++ editor
Commenting out code

C/C++ editor, code templates and search preferences

Content Assist

Content Assist is a set of tools built into the CDT that can reduce the number of keystrokes you must type to create your code.
The Content Assist plug-in consists of several components that forecast what a developer will type, based on the current
context, scope, and prefix.

Code completion

Content assist provides code completion anywhere in the document. For the current project a list is displayed of the elements
that begin with the letter combination you entered, and the relevance of each proposal is determined in the following order:

● Fields
● Variables
● Methods
● Functions
● Classes
● Structs
● Unions
● Namespaces
● Enumerations

You trigger the Code completion feature when you call Content Assist (such as when you type Ctrl+Space), but it is auto-
activated when you type ".", "->" or "::".

You can view the signature of each item on the list in a pop-up by pointing to it. You can then select an item in the list to
insert it directly into your code.

Code templates

You can create and save code templates for frequently used sections of code, which will be inserted according to scope. The
Content Assist feature also provides quick access to code templates.

When you enter a letter combination in the C/C++ editor, and type CTRL+SPACE (or right-click and click Content Assist), a
list of code elements and code templates that start with the letter combination that you typed is displayed.

You can then select a code template from the list and it is inserted directly into your code.

For example, the code template do while statement contains the following code:

When you select the do code template from the list, you insert the following code:

do {
} while (condition);

If the completion engine finds only one proposal in your templates, that proposal is inserted at the current cursor position. For
example if you create a new .cpp file and type mai+CTRL+SPACE the following code is inserted at the cursor location:

int
main(int argc, char **argv) {

}

No Completions

If you invoke Content Assist, but no completions are found a message will be displayed on the status to inform you that the
Content Assist parser has timed out.

Code entry

Using Content Assist
Creating and editing code templates
Importing and exporting code templates

C/C++ perspective icons

Templates

Templates are sections of code that occur frequently enough that you would like to be able to insert them
with a few keystrokes. This function is known as Content Assist; the sections of code that are inserted
are known as templates.

To input an existing Content Assist template into a file, such as one for an if statement, type the initial
character ("i" in this case), then press Ctrl+Space. The templates that begin with that character appear.
Double-click on a template to insert it into a file.

You can edit existing Code/Content Assist templates or create new ones. From the menu bar choose
Window > Preferences > C/C++ > Code Templates.

CDT Overview

Creating and editing code templates
Using templates
Importing and exporting code templates

Edit menu
Content Assist page, Preferences window
Code Templates page, Preferences window

file:///C|/test/docs/reference/cdt_u_menu_edit.htm

Editing C/C++ Files

This section provides information on editing C/C++ files.

C/C++ editor
C++
Makefile

C/C++ editor

The CDT provides an editor that gives you specific support for editing C/C++ code. This C/C++ editor
is invoked automatically when you edit a C/C++ source file.

The C/C++ editor includes the following features:

● Syntax highlighting
● Content/code assist
● Integrated debugging features

You can customize some of the operation of the Editor view from the Window > Preferences > C/C++
> Editor preferences dialog.

CDT Overview

Using Content Assist

C/C++ editor key binding actions
C/C++ editor preferences
Outline view for C/C++
Views and editors

file:///C|/test/docs/reference/cdt_u_editor_key_bind.htm

Makefile

A makefile is a text file that is referenced by the make command that describes the building of targets,
and contains information such as source-level dependencies and build-order dependencies.

The CDT can generate a makefile for you, such projects are called Managed Make projects. Some
projects, known as Standard Make projects, allow you to define your own makefile.

Sample Makefile

A sample Makefile
This Makefile demonstrates and explains
Make Macros, Macro Expansions,
Rules, Targets, Dependencies, Commands, Goals
Artificial Targets, Pattern Rule, Dependency Rule.

Comments start with a # and go to the end of the line.

Here is a simple Make Macro.
LINK_TARGET = test_me.exe

Here is a Make Macro that uses the backslash to extend to multiple
lines.
This allows quick modification of more object files.
OBJS = \
 Test1.o \
 Test2.o \
 Main.o

Here is a Make Macro defined by two Macro Expansions.
A Macro Expansion may be treated as a textual replacement of the
Make Macro.
Macro Expansions are introduced with $ and enclosed in
(parentheses).
REBUILDABLES = $(OBJS) $(LINK_TARGET)

Make Macros do not need to be defined before their Macro Expansions,
but they normally should be defined before they appear in any Rules.
Consequently Make Macros often appear first in a Makefile.

Here is a simple Rule (used for "cleaning" your build environment).
It has a Target named "clean" (left of the colon ":" on the first
line),
no Dependencies (right of the colon),
and two Commands (indented by tabs on the lines that follow).
The space before the colon is not required but added here for
clarity.
clean :
 rm -f $(REBUILDABLES)
 echo Clean done

There are two standard Targets your Makefile should probably have:
"all" and "clean", because they are often command-line Goals.
Also, these are both typically Artificial Targets, because they
don't typically
correspond to real files named "all" or "clean".

The rule for "all" is used to incrementally build your system.
It does this by expressing a dependency on the results of that
system,
which in turn have their own rules and dependencies.
all : $(LINK_TARGET)
 echo All done

There is no required order to the list of rules as they appear in
the Makefile.
Make will build its own dependency tree and only execute each rule
only once
its dependencies' rules have been executed successfully.

Here is a Rule that uses some built-in Make Macros in its command:
$@ expands to the rule's target, in this case "test_me.exe".
$^ expands to the rule's dependencies, in this case the three files
main.o, test1.o, and test2.o.
$(LINK_TARGET) : $(OBJS)
 g++ -g -o $@ $^

Here is a Pattern Rule, often used for compile-line.
It says how to create a file with a .o suffix, given a file with a .
cpp suffix.
The rule's command uses some built-in Make Macros:
$@ for the pattern-matched target
$lt; for the pattern-matched dependency

%.o : %.cpp
 g++ -g -o $@ -c $<

These are Dependency Rules, which are rules without any command.
Dependency Rules indicate that if any file to the right of the
colon changes,
the target to the left of the colon should be considered out-of-
date.
The commands for making an out-of-date target up-to-date may be
found elsewhere
(in this case, by the Pattern Rule above).
Dependency Rules are often used to capture header file dependencies.
Main.o : Main.h Test1.h Test2.h
Test1.o : Test1.h Test2.h
Test2.o : Test2.h

Alternatively to manually capturing dependencies, several automated
dependency generators exist. Here is one possibility (commented
out)...
%.dep : %.cpp
g++ -M $(FLAGS) $< > $@
include $(OBJS:.o=.dep)

Frequently Asked Questions:

Your Console view can be very useful for debugging a build.

Q1. My Console view says "Error launching builder". What does that mean?

Error launching builder (make -k clean all)
(Exec error:Launching failed)

Most probably, the build command (by default "make") is not on your path. You can put it on your path
and restart Eclipse.
You can also change the build command to something that is on your path. If you are using MinGW
tools to compile, you should replace the build command with "mingw32-make".

Q2. My Console view says "No rule to make target 'X'".

make -k clean all
make: *** No rule to make target 'clean'.
make: *** No rule to make target 'all'.

By default, the make program looks for a file most commonly called "Makefile" or "makefile". If it
cannot find such a file in the working directory, or if that file is empty or the file does not contain rules
for the command line goals ("clean" and "all" in this case), it will normally fail with an error message
similar to those shown.

If you already have a valid Makefile, you may need to change the working directory of your build. The
default working directory for the build command is the project's root directory. You can change this by
specifying an alternate Build Directory in the Make Project properties. Or, if your Makefile is named
something else (eg. buildFile.mk), you can specify the name by setting the default Build command
to make -f buildFile.mk.

If you do not have a valid Makefile, create a new file named Makefile in the root directory. You can
then add the contents of the sample Makefile (above), and modify it as appropriate.

Q3. My Console view says "missing separator".

make -k clean all
makefile:12: *** missing separator. Stop.

The standard syntax of Makefiles dictates that every line in a build rule must be preceded by a Tab
character. This Tab character is often accidentally replaced with spaces, and because both result in white-
space indentation, this problem is easily overlooked. In the sample provided, the error message can be
pinpointed to line 12 of the file "makefile"; to fix the problem, insert a tab at the beginning of that line.

Q4. My Console view says "Target 'all' not remade because of
errors".

make -k clean all
make: *** [clean] Error 255
rm -f Test1.o Test2.o Main.o test_me.exe
g++ -g -o Test1.o -c Test1.cpp
make: *** [Test1.o] Error 255
make: *** [Test2.o] Error 255
make: *** [Main.o] Error 255
g++ -g -o Test2.o -c Test2.cpp
g++ -g -o Main.o -c Main.cpp
make: Target 'all' not remade because of errors.

The likely culprit here is that g++ is not on your Path.

The Error 255 is produced by make as a result of its command shell not being able to find a command
for a particular rule.
Messages from the standard error stream (the lines saying Error 255) and standard output stream (all the
other lines) are merged in the Console view here.

Q5. What's with the -k flag?

The -k flag tells make to continue making other independent rules even when one rule fails. This is
helpful for build large projects.

You can remove the -k flag by turning on Project Properties > C/C++ Make Project > Make Builder >
Stop on first build error

Q6. My Console view looks like:

mingw32-make clean all
process_begin: CreateProcess((null), rm -f Test1.o Test2.o Main.o
test_me.exe, ...) failed.
make (e=2): The system cannot find the file specified.

mingw32-make: *** [clean] Error 2
rm -f Test1.o Test2.o Main.o test_me.exe

This means that mingw32-make was unable to find the utility "rm". Unfortunately, MinGW does not
come with "rm". To correct this, replace the clean rule in your Makefile with:

clean :
 -del $(REBUILDABLES)
 echo Clean done

The leading minus sign tells make to consider the clean rule to be successful even if the del command
returns failure. This may be acceptable since the del command will fail if the specified files to be deleted
do not exist yet (or anymore).

Navigation Aids

This section provides information on navigating through the C/C++ Perspective.

Outline View
Project File views
Make Targets View
C/C++ search
Open declarations
Open Type
Class Browser

Outline view

The Outline view displays an outline of a structured C/C++ file that is currently open in the editor area, by listing the structural
elements.

The Outline view shows the following elements in the source file in the order in which they occur:

● Class
● Namespace
● Include
● Enum
● Enumerator
● Field private
● Field protected
● Field public
● Include
● Method private
● Method protected
● Method public
● Struct
● Typedef
● Union
● Variable
● Function
● Macro Definition

You can also sort the list alphabetically. When you select an element in the Outline view, the C/C++ editor highlights both the
selected item and the marker bar (left margin). For example, to move to the start of main() in the C/C++ editor, click main() in the
Outline view.

For more information about the marker bar, see Workbench User Guide > Reference > User interface information > Views and
editors > Editor area.

Filtering the Outline View

You can filter the Outline view by choosing to display or hide the following items:

● Fields
● Static members
● Non-public members

You can select an element in the Outline view, and perform the following actions:

● Open the C/C++ Search window box. The Search string box is populated and the element type is selected.
● Complete a text-based search, of a workspace or a specified working set for the selected element.
● Open a selected .h file in the editor.
● Rename Refactor

Icons

Hide Fields

Hide Static Members

Hide Non-Public
Members

Sort

For more information about the Eclipse workbench, see Workbench User Guide > Tasks > Upgrading Eclipse.

For more information about Working sets, see Workbench User Guide > Concepts > Working sets.

Comments
Content Assist and code completion
C/C++ search
Open Declarations

Displaying C/C++ file components in the C/C++ Projects view
Searching for C/C++ elements

Outline view

Project file views

Projects files and elements are displayed in the C/C++ Projects view and in the Navigator view.

C/C++ Projects view

Displays, in a tree structure, only elements relevant to C and C++ projects. In this view you can do the
following:

● Browse the elements of C/C++ source files
● Build Targets
● Create new projects, classes, files, or folders
● Import or Export files and projects
● Manage existing files (cut, paste, delete, move or rename)
● Open files in the editor view
● Open projects in a new window
● Refactor
● Restore deleted files from local history
● Search

Files that you select in the C/C++ Projects view affect the information that is displayed in other views.

Navigator view

The Navigator view provides a hierarchical view of all the resources in the workbench, not just your C/C
++ resources. From this view, you can open files for editing or select resources for operations such as
exporting.

Right-click any resource in the Navigator view to open a pop-up menu from which you can perform
operations such as copy, move, create new resources, compare resources, or perform team operations.
For a description of what each menu item does, select an item and press F1.

By default, the Navigator view is included in the Resources perspective. To add it to the current
perspective, click Window > Show View > Navigator.

Toolbar icons

Icon Name Description

Minimize Console. Minimizes the view.

Maximize Console Maximizes the view.

Back This command displays the hierarchy that was displayed immediately prior
to the current display. For example, if you Go Into a resource, then the
Back command in the resulting display returns the view to the same
hierarchy from which you activated the Go Into command. The hover help
for this button tells you where it will take you. This command is similar to
the Back button in a web browser.

Forward This command displays the hierarchy that was displayed immediately after
the current display. For example, if you've just selected the Back
command, then selecting the Forward command in the resulting display
returns the view to the same hierarchy from which you activated the Back
command. The hover help for this button tells you where it will take you.
This command is similar to the Forward button in a web browser.

Up This command displays the hierarchy of the parent of the current highest
level resource. The hover help for this button tells you where it will take
you.

Collapse All This command collapses the tree expansion state of all resources in the
view.

Link with Editor This command toggles whether the Navigator view selection is linked to
the active editor. When this option is selected, changing the active editor
will automatically update the Navigator selection to the resource being
edited.

Menu Click the black upside-down triangle icon to open a menu of items specific
to the Navigator view.

Select Working Set
Opens the Select Working Set dialog to allow selecting a working
set for the Navigator view.

Deselect Working Set
Deselects the current working set.

Edit Active Working Set
Opens the Edit Working Set dialog to allow changing the current
working set.

Sort
This command sorts the resources in the Navigator view according
to the selected schema:

❍ By Name: Resources are sorted alphabetically, according to
the full name of the resource (e.g., A.TXT, then B.DOC,
then C.HTML, etc.)

❍ By Type: Resources are sorted alphabetically by file type/
extension (e.g., all DOC files, then all HTML files, then all
TXT files, etc.).

Filters
This command allows you to select filters to apply to the view so
that you can show or hide various resources as needed. File types
selected in the list will not be shown in the Navigator.

Link with Editor
See the toolbar item description above.

For information about the Navigator view toolbar and icons, see Workbench User Guide > Concepts >
Views > Navigator View.

For information about the pop up menu in the Navigator view, see Workbench User Guide >

Reference > User interface information > Views and Editors > Navigator View.

For information about the Working Sets, see Workbench User Guide > Concepts > Workbench >
Working sets.

CDT Projects
Working with existing code

Creating a project
Working with C/C++ project files

C/C++ perspective icons

Open declaration

You can select an element name in your code and quickly navigate to its declaration.

Open declaration will attempt to navigate to the exact declaration of the selected element. Open
declaration requires your file to have the proper include paths set up to the declaration. If for any reason
open declaration cannot find the declaration, it will display the following message in the status line:

For more information see Adding Include paths and symbols.

CDT Projects
C/C++ search

Adding Include paths and symbols
Navigate to a C or C++ element's declaration
Searching for C/C++ elements

Build

This section describes the build views and terminology.

Building C/C++ Projects
Manage Build Extensibility Document

Building C/C++ projects

The CDT relies on an external make utility, such as GNU make, to build a project. The CDT can
generate makefiles automatically when you create a Managed Make C project or a Managed Make C++
project. You have the option of creating a Standard Make C project or a Standard Make C++ project and
providing the makefile yourself.

Required utilities

You must install and configure the following utilities:

● Build (e.g. make).
● Compile (e.g. gcc).
● Debug (e.g. gdb).

Note: while make, gcc and gdb are the examples used in the documentation, virtually any similar set of
tools or utilities could be used.

Tip: Cygwin contains these utilities (make, gcc and gdb) for a Windows environment, while running the
cygwin installation ensure gcc and make are selected, they are not installed by default. For more
information, see http://www.cygwin.com. Red Hat users, all you need to build your project is included
in the Red Hat Linux installation. For other operating systems please refer to your installation
documentation.

Build terminology

The CDT uses a number of terms to describe the scope of the build.

Build Project

This is an incremental build (make all, assuming all is defined in your makefile). Only the components
affected by modified files in that particular project are built.

Rebuild Project

Builds every file in the project whether or not a file has been modified since the last build. A rebuild is a
clean followed by a build.

http://www.cygwin.com/

For more information on builds, see:

● Workbench User Guide > Concepts > Workbench > Builds
● Workbench User Guide > Tasks > Building resources

Build-related information is displayed as follows:

● The Console view displays the output of the build tools.
● The Tasks view displays a list of compiler errors and warnings related to your projects.
● Makefile targets are displayed in the Make Targets view.

For more information about the Tasks view, see Workbench User Guide > Reference > User interface
information > Views and editors > Tasks view.

Getting a makefile

You can either create a C/C++ project for which you supply the makefile or create a C/C++ project for
which the CDT generates makefiles automatically.

To create a new project, from the menu bar choose File > New > Project. In the dialog that appears:

● To create a project for which you supply the makefile, select either Standard Make C project
or Standard Make C++ project.

● To create a project for which the CDT supplies a basic makefile, select either Managed Make C
project or Managed Make C++ project.

Setting build preferences

You can set build preferences in Eclipse:

Build order
If certain projects must be built before others, you can set the build order. If your project refers to
another project, the CDT must build the other project first. To set the build order, from the menu
bar select Window > Preferences > Build Order.

When you set the build order, the CDT does not rebuild projects that depend on a project; you
must rebuild all projects to ensure all changes are propagated.

Automatic save
You can set the CDT to perform an automatic save of all modified resources when you perform a
manual build; from the menu bar, select Windows > Preferences > Workbench.By default, this
feature is enabled.

Controlling the building of your project

The C/C++ compiler that a project uses is controlled by the project's Properties setting. To view a
project's properties, right-click on the project and select Properties. In the dialog that appears, the C/C+
+ Standard Make Project page enables you to control a variety of settings, including:

Build Setting
Controls whether the compiler will Stop On Erroror Keep Going On Error. Choosing Keep
Going On Error will force the compiler to attempt to build all referenced projects even if the
current project has errors.

Build Command
Controls which make is used.

Workbench Build Behavior
Controls which makefile target will be built depending on the scope of the build.

Viewing build information

Build-related information is displayed as follows:

● The Console view displays the output of the make utility.
● The Tasks view displays a list of compiler errors and warnings related to your projects.
● Build actions display in the Make Targets view.

CDT Projects
Project file views

Building

Managed Build System Extensibility
Document
This document describes the design of the managed build system and how to extend it.

Author : Sean Evoy

Revision Date : 10/21/2003 - Version: 0.1.0
Change History : 0.1.0 - Document Creation

Table of Contents
1 Introduction
1.1 Who Needs This Information
1.2 Managed Build System Overview
1.3 The Standard Build System

2 Build Model Grammar Elements
2.1 Model
2.2 Target
2.3 Tool
2.4 Option Category
2.5 Configuration
2.6 Tool Reference
2.7 Option
2.8 Option Reference
2.9 List Option Value
2.10 Enumerated Option Value

3 UI Representation
3.1 New Project Wizard
3.2 Build Property Page

4 Makefile Generation
4.1 Main Makefile
4.2 Makefile Fragments
4.3 Dependency Makefile Fragments
4.4 Inter-Project Dependencies

5 Tutorial: An Example Tool Chain
5.1 Setting up your Environment
5.2 Creating your Plug-in Project
5.3 Creating the Extension
5.4 Adding a Target
5.5 Adding a Configuration
5.6 Adding a Tool
5.7 Testing the Target
5.8 Adding Tool Options
5.9 Taking the Next Step

mailto:sevoy@ca.ibm.com

1 Introduction

C and C++ developers are a diverse group. The tools they use, the processes they follow, and the level of support
they expect from their development environments vary widely. The CDT provides a framework for integrating those
tools into Eclipse and the managed build system is part of that framework. Understanding how the managed build
system works, and what steps are required to extend it is the focus of this document.

1.1 Who Needs This Information

The information in this document describes the design of the managed build system and discusses how to add new
build targets and tools to it through the ManagedBuildInfo extension point. It is intended for someone who
wants to understand how the managed build system works, or is interested in adding their own tool chain
specification to it.

The CDT comes configured to generate makefiles to build executables, static libraries, and shared libraries on
Cygwin, Linux, and Solaris using Gnu tools. If you are using the CDT on those platforms, have access to Gnu tools
and find the predefined targets sufficient for your needs, then you do not need to modify anything. Please feel free
to skip sections 2, 3, and 5 as they are primarily concerned with adding new tool chains to the build model.

If you are working with tools other than Gnu, or you wish to build for targets the CDT does not support out of the
box, then you have to decide whether you will provide your own makefile and use the standard builder, or add a
description of your target to the extension point and let the CDT generate the makefiles for your project.

If you choose to add your own tools to the managed build system, it is assumed that you are familiar with XML and
the Eclipse extension point mechanism. Having made the standard disclaimer, it should be said that the tutorial in
section 5 presents a cookbook approach to adding a new tool specification, so you can always jump right in and
refer to the online help in the Platform Plug-in Developer Guide if you get stuck.

1.2 Managed Build System Overview

The managed build system consists of several components that interact to build a project. At the core of the
managed build system is the build model. It is the central clearing house for all the build-related information that
internal and external clients require. There are three internal clients; the user interface components, a makefile
generator that is responsible for generating a correct makefile for a project when it is built, and the CDT parser.
The external clients are the end-user, who interacts with the build model through the user interface, and tool-chain
integrators who supply tool definitions to the build model. The diagram below shows the basic set of relationships
between these components.

Figure 1 Managed build system Overview

1.2.1 External Users

From the perspective of the build model, there are two external users. The first is the end-user that interacts with
the build model through the UI elements described in section 4. The UI includes a new project wizard that asks the
build model about what tools have been defined for new projects. When the project has been created, the project
property page uses the information in the build model to populate its display. The user can change the information
associated with the tools for a project through the property page and the build model is responsible for saving
those changes between sessions. The second external user is the tool integrator who adds information about their
tool-chain to a plug-in manifest as described in the tutorial in Section 5. The tool-chain integrator is the primary
audience for this document.

1.2.2 Internal Users

There are three internal clients of the information in the managed build system. The first is the makefile generator
that creates a correct makefile for a project based on the tools and settings defined for the project in the build
system. The second is the built-in CDT parser that relies on the build system to tell it about the include paths and
defined preprocessor symbols for a given project so that it can properly parse a file. The third client is the UI
component of the build system that queries the build model for the tools and options defined for a project to build
its display and store the user settings.

1.2.3 Tool Definitions and Settings Storage

A key feature of the managed build system is that it is extensible. Tool integrators can use the grammar, described
in Section 2, to add their own tools to the build system. The same grammar is used to save the settings that the
user overrides through the UI between sessions.

1.3 The Standard Build System

There is also a standard build system supplied as part of the CDT framework that is unrelated to the managed
build system. The standard system provides a small set of tools to build a user’s projects. The user is expected to
supply a makefile which includes enough information to build their project. The UI allows the user to switch
between targets defined in the makefile, like clean or all, and for the user to enter the information the parser
requires.

The decision to use the standard or managed build system is a trade-off. For users with an existing project that
already has a set of working makefiles, or for users that prefer to write their own makefile, the standard system
may be perfect. However, many users are uncomfortable writing makefiles, so the standard system may present a
barrier to adoption for them.

2 Build Model Grammar Elements

The managed build system defines a grammar to describe tool chain information. This information is used to store
invariant data, like the command line invocation for a specific compiler, for example. The build system also stores
user settings between sessions, like the level of debugging information that is needed for a particular build
configuration. The following section describes the format of the grammar and what the information is used for by
the build model.

2.1 Model

The figure below shows a UML model of schema elements.

Figure 2 Managed build model elements

2.2 Target

In its current implementation, the target in the build model is confusing because it encompasses the responsibilities
of two distinct participants in a build. The first is the host target where the build tools are located. The information
that this type of target needs to managed are things like the command to start the make utility, to remove files, and
to invoke build tools. The second is the physical target that the build artifact is supposed to run on, which may or
may not be the same as the host target. This distinction will be clarified in the next iteration of the build model.

Targets can be arranged into hierarchies to promote the efficient sharing of tools and configurations. If you have
defined a target that should not be selected by the user, but is a root for other targets, it may be declared abstract
by setting the isAbstract attribute to true. Abstract targets do not appear in the UI. You must provide a unique
identifier for the target in the id attribute. The build model uses this information to distinguish between the target
definitions it finds. Children of the abstract target will have the same tools and configurations the abstract target

has. For these children to function properly, their parent attribute must contain the unique identifier of the parent
target.

A concrete target must have at least one configuration defined for it. A target must also define (or inherit) a set of
tool definitions that work together to produce the build goal as an output. You must also provide a meaningful name
that will be displayed to the user in the UI and new project wizards.

The target defines the command needed to invoke the make utility in the makeCommand attribute. Any special
flags that need to be passed to the make utility are defined in the makeFlags attribute. The command to remove
files on the host machine is defined in the cleanCommand attribute.

Typically a build target will only be valid on a limited subset of operating systems. For example, it does not make
much sense to allow a user to create a Solaris shared library project if they are running Eclipse and the CDT on
Windows. You can specify the operating systems that the target is restricted to as a comma-separated list in the
osList attribute. At the moment, you can specify win32, linux and solaris as the filters.

The CDT offers a facility for parsing binary files if it knows which output format the build artifact has been produced
with. The binaryParser attribute must contain the id of the appropriate parser if you want build artifacts of the target
to be parsed in the workspace. There are currently two defined binary parsers; org.eclipse.cdt.core.PE for
Windows artifacts, and org.eclipse.cdt.core.ELF for Linux and Solaris. This information is used to set the
parser when a project is created and is not something the user can change through the UI.

The target is responsible for maintaining the name of the final build goal. The user selects the name of the build
target in the UI, and the build model maintains it in the artifactName attribute. The implementer of a tool chain
should not specify this in the plug-in manifest. However, the default extension for the target can be specified using
the defaultExtension attribute.

2.2.1 Schema

Attribute Description Required

artifactName The name of the build goal defined by the target. This is set by
the user through the UI and stored in the build model through this
attribute.

no

binaryParser The id of the appropriate parser for the build artifact. yes

cleanCommand The command to remove files on the build machine. You must
define this value if the target does not have a parent, or it is not
defined in the parent.

yes

defaultExtension The extension the build goal will have, for example ‘.exe’ or ‘.so’. no

id A unique identifier that the model manager will use to keep track
of this specific target.

yes

isAbstract Flags the target as abstract. An abstract target can not be
selected by the user in the UI, but children of the target will inherit
its tools and configurations.

yes

isTest A target can be flagged for test purposes only. It can be
manipulated programmatically, in JUnit tests for example, but not
selected by the user in the UI.

yes

makeCommand The command to invoke the make utility. You must define this
value if the target does not have a parent, or it is not defined in
the parent.

yes

makeFlags The default flags passed to the make utility on the command line. yes

name The name for the target that is displayed to the user in the UI. yes

osList A comma-separated list of operating systems that the target is
valid for.

no

parent The unique ID of the parent of the target. no

2.2.2 Example

The example below shows a target definition called ‘Executable’. Tool and configuration information will be added
to our definition is later sections.

2.3 Tool

A tool represents some sort of executable component that can take a set of inputs and produce a set of outputs. A
tool must have a unique id for the build model, and a name that is displayed to a user through the UI.

Certain tools logically belong to certain kinds of projects. For example, the Gnu compiler is invoked differently for C
and C++ source files. You can specify a filter for a tool based on the nature of a project using the natureFilter
attribute. When a new C project is created, a cnature is added to it. New C++ projects have both a cnature and
ccnature. The build model interprets the filter as follows. If you specify a cnature filter, then the tool will only be
displayed if the project has a cnature and does not have a ccnature. If you specify a ccnature filter, then the
tool will be displayed if the project has a ccnature. The default if no filter is specified is to display the tool for all
projects.

Tools can be added to the plug-in manifest as part of a target or as a stand-alone specification. Tools defined as
part of a target will be available for projects that are created to build for the target or any child of the target in which
the tool is defined. If you want targets o use a tool that is not specified as belonging to it, you must create a
reference to the tool in the target specification. Please refer to section 2.6 for a description of how to use tool
references in your plug-in manifest.

Tools can define a set of input file extensions in the sources attribute. This indicates that a tool will build for those
and only those file types. Similarly, a tool might specify a set of file extensions that they will produce in the outputs
attributes.

Each tool specifies a command that will be placed in the makefile during the makefile generation stage of building.
Two optional flags control how the command is generated. If the tool requires a special output flag, such as -o for
a compiler or linker, the implementer must specify that in the outputFlag attribute. If the output of the tool usually
has a special prefix, like the prefix lib for libraries on POSIX systems, the implementer must specify this in the
outputPrefix attribute.

One of the clients of the information in the build model is the makefile generator. It must track the dependencies
between elements in the workspace, and to do that, it needs to know if a file is a header or a source file. Currently,
the build model uses the list of file extensions specified in the headerExtensions attribute to identify a file as
containing an interface.

2.3.1 Schema

Attribute Description Required

id A unique identifier for the tool that will be used by the build
model.

yes

name Human-readable name for the tool to be used in the UI. yes

sources A comma-separated list of file extensions that the tool will
produce output for.

no

outputs The extension that the tool will produce from a given input. no

command The command that invokes the tool. For example, gcc for
the Gnu C compiler, or g++ for the Gnu C++ compiler.

yes

outputFlag An optional flag for tools that allow users to specify a name
for the artifact of the tool. For example, the GCC compiler
and linker tools typically allow the user to specify the name
of the output with the '-o' flag, whereas the archiver that
creates libraries does not.

no

outputPrefix Some tools produce files with a special prefix that must be
specified. For example, a librarian on POSIX systems
expects the output to be lib.a so 'lib' would be the prefix.

no

dependencyCalculator Unused in 1.2 no

headerExtensions A comma-separated list of file extensions that are used for
header files by the tool chain.

yes

natureFilter Specify the project natures the tool should apply to. yes

2.3.2 Example

The tool shown in the example below will appear in the UI with the label Compiler. It will be used to build any file in
the project with a .C, .cc, or .cpp extension and will produce a file with an .o extension. When the makefile is
generated, a rule will be generated with the command g++ <…> -o <…>.

2.4 Option Category

A tool can have a large number of options. To help organize the user interface for these options, a hierarchical set
of option categories can be defined. A unique identifier must be specified in the id attribute. This will be used by the
build model to manage the category. The user will see the value assigned to the name attribute. If the category is
nested inside another category, the unique identifier of the higher level category must be specified in the owner
attribute, otherwise use the identifier of the tool the category belongs to.

2.4.1 Schema

Attribute Description Required

id Used by the build model to uniquely identify the option
category.

yes

name A human-readable category name, such as 'Pre-processor
Options'. This will be the name the user sees displayed in
the UI.

yes

owner Option categories can be nested inside other option
categories. This is the ID of the owner of the category.

yes

2.4.2 Example

This example shows an option category that will be displayed in the UI with the label Flags. There are two options
defined in this category, General, and Optimization.

2.5 Configuration

A target defines the information about the tools needed to build a project for a particular environment.
Configurations are used to pre-define and store the settings that the user specifies for those tools.

A target must have at least one default configuration defined for it. Users can create new configurations for a
project, but they must be based on the settings defined in a default configuration. For example, a user may want to
create a Profile configuration based on the target’s default Debug configuration.

Each configuration must have a unique identifier specified in the id attribute that will be used by the build model to
manage the configuration. It must also have a name that will be displayed in the UI in the build property page and
new project wizards.

2.5.1 Schema

Attribute Description Required

id A unique identifier that the model manager will use to keep
track of this specific configuration.

yes

name The human-readable name that will be displayed in the UI
to identify this configuration.

yes

2.5.2 Example

The example below shows a configuration named Default that belongs to the target Executable.

2.6 Tool Reference

A tool reference is primarily intended to be used when saving user settings between sessions. When the user has
overridden an option in the referenced tool, an option reference with the new setting is created and added to the
tool reference.

Tool references are used by the build model for two distinct tasks; because they contain option references, tool
references hold onto user settings between sessions. They can also be added to a default configuration
specification if the default settings for the tool should be overridden. For example, a ‘Debug’ configuration may
have optimization disabled by default, whereas a ‘Release’ configuration may default to the highest possible level.

2.6.1 Schema

Attribute Description Required

id The unique identifier of the tool this is a reference for. yes

2.6.2 Example

The example below shows how the user has overridden the compiler flags option in the compiler tool in the Default
configuration.

2.7 Option

Options in the build model are used to organize and maintain the command arguments that are sent to tools during
the build. Users interact with the build model through the UI to set the value of options. Options hold different kinds
of values, so there are some subtle, yet important, rules for how options are to be defined. These rules are
summarized in Table 1

Each option must have a unique id for the build model to properly manage it. A descriptive name that will appear in
the UI must be specified. Options can be organized into categories to keep the UI more manageable. If an option
category has been defined for the tool, and the option should be displayed as part of that category, then the unique
identifier of the option category must be specified in the category attribute.

2.7.1 Option Types

Some options contain commands to turn a feature off or on, such as setting a flag to see descriptive messages
from a tool. Others contain lists of values, such as a set of directories to search for files. Still others are a single
selection from a pre-determined range of choices, like the level of debugging information to produce, or the type of
architecture to build for. The valueType attribute is used to indicate to the build model what kind of option it is.

Specifying the type of value an option contains is an important design decision, since it controls how the build
model treats the contents of the option’s attributes, and just as importantly, how the option is displayed to the user.
The basic types are string, boolean, stringList, and enumerated.

There are also four specialized cases of list options, includePath, definedSymbols, libs, and userObjs to
manage the list of paths to search for header files, the defined preprocessor symbols, external libraries to link
against, and object module to link in respectively.

2.7.1.1 String Options

An option of type ‘string’ contains a set of values the user has typed in the UI. When the UI is created, it will display
the option using a simple entry widget. This option type is useful for options that cannot be easily specified using
lists or enumerations, or for options that are not frequently set. For these types of options, the build model will
ignore what it finds in the command attribute.

2.7.1.2 Boolean Options

An option of type ‘boolean’ is used to specify an option that is either true or false. The option will be displayed to
the user as a check box. The value of the option is set true by selecting the check box, and false by deselecting it.
If true, the command associated with the option will be passed to the tool when it is invoked. The default value of
the option will be considered when it is displayed in the UI.

2.7.1.3 Enumerated Options

Enumerated options are displayed in the UI in a drop-down list-box. With enumerated options, the option definition
takes on an organizational role; the important information is stored in the enumerated option values. Any
information specified in defaultValue is ignored, since the contents of the enumerated value definitions are used to
populate the selection widget. The option answers the command of the selected enumerated value, so any
information in command is also ignored.

2.7.1.4 String List Options

String list options are displayed in the UI using a list control and a button bar that allows users to add, remove, and
reorder list items. Elements of the list are defined and stored in list options values, as described in section 2.9. Like
enumerated options, lists ignore the information in the defaultValue attribute, but unlike the enumerated option,
they treat any pre-defined list option values as defaults. The value defined in the command attribute will be applied
to all the values in the list.

2.7.1.4.1 Special List Options

There are four special cases of string list options; includePaths specify the paths to search for header files,
definedSymbols for user-defined preprocessor defines, libs for libraries that must be linked into the final build
goal, and userObjs for external object files that must be linked.

While specifying these types of options as type stringList will make them appear in the UI correctly, the build model
will not be able to recognize them as special in any way. Since certain functions of the CDT require this information
to function correctly, it is important to flag these types of options appropriately. For example, the search and
indexing function may not perform correctly if the includes paths and defined symbols are not set for a project.
Similarly, the makefile generator may not be able to generate dependencies correctly in the makefile if it is
unaware that there are libraries and external object files that participate in the final build step.

2.7.2 Default Values

Options can contain default values that apply to the option until the user has edited them through the UI. You can
specify those values using the defaultValue attribute. However, the type of option will determine how the build
model treats the value it finds associated with the attribute. Options that define simple string values will pass the
value to the tool exactly as it is defined in the attribute. For Boolean options, any value but the string true will be
treated as false. List options treat all the defined list option values as default, and enumerated options search
through the defined enumerated values for the default.

2.7.3 Option Commands

The values stored in the options are passed to build tools with unique flags, depending on the compiler and the
option. For example, an option defining the paths a linker should search for libraries might contain a large number
of search paths, but each path is passed to the linker with a -L flag. The command attribute is used to hold the
actual flag to pass along with the option value.

The build model handles the value it finds associated with the command attribute differently depending on the type
of value the option is managing based on the following heuristic. For string options, the command is ignored since

the contents of the option are treated as the command. For enumerated options, the command associated with the
selected enumerated value is used, not the command defined in the option. For Boolean options, the command is
used if the option value is set to true, otherwise it is ignored. For list options, the command is applied to each
element of the list.

Option Value Type Uses Default Value Uses Command UI Element

string Yes No Entry widget

boolean Yes Yes if true, else no Check box

enumerated No. No. Drop-down list-box

stringList No. Yes. List and button bar

2.7.4 Schema

Attribute Description Required

id A unique identifier for the tool that will be used by the build
model.

yes

name Human-readable name for the tool to be used in the UI. yes

valueType Type of value the option contains. yes

category This is the id of the option category for this option. The id
can be the id of the tool which is also a category.

no

defaultValue Optionally specifies the value for the option if the user has
not edited it. For options containing a Boolean value, the
string ‘true’ is treated as 1, any other value as 0.

no

command An optional value that specifies the actual command that
will be passed to the tool on the command line.

no

2.7.5 Example

The example below shows the specification for the optimization level option for a compiler. Note that it is an
enumerated type, so the only attributes defined for the option itself are its id for the build model, a human-readable
name, the id of the category it belongs to, and the type of value the option holds.

2.8 Option Reference

An option reference always belongs to a tool reference, and is used in two ways. First, the build model uses option
references to hold onto information the user has changed through the UI and to store it between sessions. The
second is to override the default option settings in a configuration.

The reference identifies the option it overrides through the id attribute. The defaultValue attribute is used to hold
onto the user entry, but it is used differently depending on the valueType of the option. The attribute contains the
strings true or false for Boolean options. String options contain the data entered by the user. For enumerated
options, the attribute contains the selected enumerated list value. For list options, this attribute is not used. Instead,
listOptionValues are used.

2.8.1 Schema

Attribute Description Required

id The unique identifier of the option that this is a reference to. yes

defaultValue For boolean and string options, this field is used to hold the
value entered by the user. For enumerated options, it is
used to hold the selected enumerated option value. For list
options, this attribute is not used.

no

command unused in 1.2 no

2.8.2 Example

The example below shows how the build model saves overridden option information in the project file. In this case,
the tool reference is a linker, and the option references are for linker flags and library paths.

2.9 List Option Value

Some options are best described using a list of values. This build model element is used to define an individual
element of a list option. Typically, these options are populated by the user, not by the person describing the option.
However, if you define one or more values in your extension point, they will be displayed in the UI when the user
edits the build settings for the project. If the user modifies those settings, the overridden values will be stored by
the build model and displayed in the UI.

There is an exception to this, however. Certain core functions in the CDT rely on the built-in parser to function
correctly. In order to return accurate values, the CDT parser must mimic (as closely as possible) the preprocessor
that ships with the tool chain used by the target. Unfortunately, these tools often have a number of built-in symbols
and include paths that the user is never required to set, and may be unaware even exist. In those cases, the
implementer of the tool chain must set those values in the tool definition and flag them by setting the value of the
builtIn attribute to true. Built in list option values are never shown to the user, and are only passed to clients of the
build model that specifically request them.

2.9.1 Schema

Attribute Description Required

builtIn An optional Boolean field that tells the build model to treat
the value defined as read-only.

no

value The contents of the list item. The build model will apply the
flag defined in the option to each value in the list.

no

2.9.2 Example

The example below shows an option, Defined Symbols, which contains a pre-populated list of built-in values;
__I386__, and __i386__ respectively.

2.10 Enumerated Option Value

Some options are best described as a single selection from a list of choices. For example, users typically select the
level of optimization they want the compiler to apply when creating a build artifact. The enumerate option value is
used to define the elements of the list of choices.

Each element of an enumerated option has a name that will be shown to the user in the UI. It also has a command
which should correspond to the command line option that gets passed to the tool by the builder if this element is
selected.

A default element can be indicated by setting the value of isDefault to ‘true’. If the user has not overridden the
selection in the UI, the default element will be displayed. If no default is specified, the first element in the list is
assumed to be the default and is displayed to the user.

2.10.1 Schema

Attribute Description Required

id A unique identifier for the tool that will be used by the build
model.

yes

name A descriptive name that will be displayed to the user in the
UI as one of the option values to select.

yes

isDefault Flags this enumerated value as the default to apply to the
option if the user has not changed the setting.

no

command The command that the enumerated value translates to on
the command line.

yes

2.10.2 Example

The option below shows an enumerated option to flag the language dialect for the Gnu preprocessor.

3 UI Representation

In addition to controlling the way a project is built, the build model also defines how the user interface will appear.
There are two principle ways a user interacts with the build settings model. The first is at project creation time
through the New Project wizards, the second is through the build settings property page.

3.1 New Project Wizard

The new project wizard relies on the target and configuration settings from all specified tool chains to populate the
list of choices it presents to the user. The figure below shows how the list of targets is populated with any target
whose isTest and isAbstract attribute are set to false. The value of the target's name attribute is used to populate
the drop-down list-box selection widget. Similarly, the configuration check list is populated with all the defined
configurations associated with the selected target. Note that the target selection widget is labelled Platform in the
UI. This will change in the next iteration of the build system as we further refine the concept of host target and build
target.

Figure 3 New project wizard

3.2 Build Property Page

The contents of the build property page for a project are created by examining the tools, option categories, and
options defined for the current configuration and target. In this section we will look at how the user interface
interprets the information in the build model to display options to the user.

The configuration information pane of the build property page consists of two -boxes. The first is populated with a
list of all targets that apply to the project. The second contains a list of configurations that are defined for the target
currently selected in the first. The figure below shows a project targeted solely at a Cygwin executable, with two
configurations ‘Release’ (not shown), and ‘Debug’. Note that the build settings model is queried for the target and

configuration name information.

Figure 4 Configuration selection

Users change the build settings for options associated with categories and tools. The UI relies on the information in
the build settings model for that information. The figure below shows how the tool list, displayed in a tree view, is
populated. Tools are the root elements of the tree. Categories are displayed as leaves of the tool they belong to. In
both cases, the name defined in the plug-in manifest is used as the text of the tree elements. Note that the tool
uses an externalized string to identify its name to help internationalize a tool specification, but this is not necessary.

Figure 5 Tools and option category display

As mentioned in the discussion of the build settings model, options know what type of data they manage. Different
option types require different UI widgets to properly represent that data to the user. The figure below shows what
UI elements are created for each type of option.

The Compiler Flags option contains a string option. In this example, the option is intended to be the place the user
enters all those extra flags that are not defined anywhere else in the property page. Options containing strings
display their contents in a simple entry widget.

The Optimization Level option is an enumerated option. These types of options force the user to select a single
value from a list of possible choices. Note that the name of the option is applied to the label in the UI, whereas the
name of each individual enumeratedOptionValue element is used to populate the list.

The Include Paths option is a special case of a stringList option. The contents of this option are left undefined in
this example, so the user sees an empty list. However, all list options are displayed in a list control with an
associated button bar for adding, removing, and reordering list elements. Note that the optionType attribute is set
to includePath. This notifies the build system that it must pay special attention to the values entered in this
option. There are clients of this information in the CDT that will query the build system for this information, and this
is currently the only way to flag these values as special.

Figure 6 Option display

Finally Verbose, a Boolean option, is displayed as a check-box. Since the default value for this option is defined as
false, the check-box is left unselected when it is created.

Note that the UI actually builds itself on the fly based on the options descriptions in the plug-in manifest. The order
of the options is the basis of the page layout. If the layout is not satisfactory, you must edit the plug-in file itself. You
must then restart the workspace after editing the manifest for your changes to take effect in the UI.

4 Makefile Generator

The third key element of the managed build system is the makefile generator. The makefile generator is one of the
key clients of the information stored in the build settings model. The best way to understand how the makefile
generator works is to look at a real project. The figure below shows the project that we will be using for the
purposes of this discussion. The source for the project is spread over the directories source1/, source2/, and
source2/source21. Header files are located in 2 locations; headers/, and source2/source21.

Figure 7 Example project source files

While simple, this example illustrates some of the problems projects using make typically face when source files
are organized hierarchically. One approach to these types of problems is to generate a makefile for each
subdirectory, then call make recursively, culminating in the final build step which, in theory, brings all of the build
results together.

The problem with managing this type of approach lies in understanding the dependencies and handling them
properly when the makefiles are generated. In order for this to happen, all the dependencies have to be properly
specified and complete. As long as there are no dependencies between resources in different subdirectories, the
makefiles in a recursive approach will contain a properly partitioned set of dependencies. However, in a more
realistic project organization, the fragmentary makefiles will have incomplete representations of the dependencies.
In order to correct for this, we would have to do some of the work that make gives us for free.

The approach the makefile generator takes is to use a single makefile to build the entire project. To keep the
makefile manageable and readable, the makefile generator creates makefile and dependency file fragments for
each subdirectory of the project that contributes source code, and uses the include capability of make to bring them
all together.

The figure below shows the makefile, makefile fragments, and dependency fragments that are generated for the
project.

Figure 8 Generated makefiles

In the next sections, we will examine the makefiles that are generated in more detail.

4.1 Main Makefile

There is one main makefile generated for a project. Based on information for the target, the proper clean command
is defined as a macro. Note that for efficiency, the contents of macros are calculated only when they are defined or
modified, thus all assignment operators are generated as ‘:=’ or ‘+=’ with the exception of the list of objects.

The makefile defines the macros that hold the list of build sources, but they are populated in the makefile
fragments. It also contains a list of subdirectories that contribute source files to the build. The makefile generator
will generate fragmentary makefiles for each of the directories, so the main makefile must include each of these
fragments.

This makefile is passed as an argument to make, so it contains the real build target, along with clean and all
targets. Finally, the makefile generator will calculate dependencies for each of the source files in the build, and
generate these into a dependency fragment for each subdirectory. The main makefile includes each of the
fragments as well.

4.2 Makefile Fragments

Obviously, the makefile we just looked at is incomplete. There are no rules for building actual source files, and no
source files listed. However, the makefile generator places that information into makefile fragments for each
subdirectory contributing source to the build. The figure below shows what the fragment for the source1/
subdirectory looks like.

The fragment contributes one file, class1.cpp, and a rule to build all source files with the ‘cpp’ extension. The
content of the dependency and command lines is derived from the build settings model. For the dependency line,
the makefile generator asks the build model if there are any tools that build files with a particular extension. If so,
the tool is asked for the extension of the output. For the command line, the tool that builds for the extension
supplies the actual command, while the options for the tool supply the arguments to pass to it.

4.3 Dependency Makefile Fragments

There is one final piece to the puzzle, and that is a list of dependencies for each source file in the build. Recall that
make will rebuild any file that is out of date in its dependency graph, but it only adds the dependency to the graph if
it is explicitly told to do so. Thus, it is the responsibility of the makefile generator to completely describe all
dependencies for make. Consider the dependencies of the final build target to Class1, as shown in the graph
above. We can see that make will need to rebuild Class1.o if Class1.cpp, Class1.h or Class2.h changes.
In the makefile fragment, we have only defined a dependency between files with an ‘o’ and a ‘cpp’ extension.

The makefile generator places the remaining, explicit dependencies in a separate makefile fragment for each
subdirectory. The figure below shows the fragment for the source1/ subdirectory.

4.4 Inter-Project Dependencies

A project may reference one or more additional projects in the workspace. The makefile generator attempts to
generate these dependencies in two ways. First, the makefile must have a dependency on the build goal of the
referenced project in the main target, and it must include instructions for building those targets as a separate rule.

For the remainder of this discussion, let us consider the following basic scenario. Project A builds an executable, a.

exe. It references project B which builds a library libB.a. The main build target in the makefile for project A would
be generated with the output of project B as a dependency.

As you can see from the generated makefile above, the rule for the target A.exe will be evaluated if the output of B
has changed. This works well if the output of project B can be determined. However, that is only the case when
project B is managed. Standard make projects do not know what the output of their build step is since that
information is encoded in the makefile. If project A references a standard project, it will not have an explicit
dependency on the output of that project.

The second element of the inter-project dependency is the rule to build the dependent project. This is generated as
part of the deps target to ensure that the output of B is up-to-date when A is built. The rule to build the referenced
project is simply a command to change to the appropriate build directory of the referenced project and call make
again. Note that $(MAKE) will evaluate to the same invocation that was used to build the main project including the
flags that were passed to it.

5 Tutorial: An Example Tool Chain

New managed build system tool chains are specified by extending the ManagedBuildInfo extension point
defined in the org.eclipse.cdt.managedbuilder.core plug-in. The easiest way to do this is to create a new
plug-in project and add your own definitions there.

5.1 Setting up your Environment

If you are starting with a clean environment, you will need to import the plug-ins org.eclipse.cdt.core, org.
eclipse.cdt.make.ui, and org.eclipse.cdt.managedbuilder.ui (and any plug-ins they require) into
your run-time workbench instance by performing the steps below. If you already have the required plug-ins in your
workbench instance, proceed to the section "Creating your plug-in project".

1. From the resource perspective, use File > Import... > External Plug-ins and Fragments.
2. Continue clicking on the Next > button until you get to the screen called Selection. This screen will contain

a list of all of the plug-ins in your host workbench instance.
3. Select org.eclipse.cdt.core, org.eclipse.cdt.make.ui, and org.eclipse.cdt.

managedbuilder.ui from the list and then click the button Add Required Plug-ins.
4. Click on the Finish button. Your Navigator view should contain the selected plug-ins and all of the plug-ins

they require.

5.2 Creating your Plug-in Project

You will need to create a project to add your tool chain definition. Technically the extension can be defined in any
plug-in manifest, but for this tutorial we will create a new, empty plug-in project with an empty plug-in manifest file.

1. Open the New Project... wizard (File > New > Project...), choose Plug-in Project from the Plug-in
Development category and click the Next > button.

2. On the Plug-in Project Name page, use org.eclipse.cdt.example.toolchain as the name for your
project, and click the Next > button.

3. On the Plug-in Project Structure Page you will see that the wizard has set the id to org.eclipse.cdt.
example.toolchain by default. We are going to be defining the tool chain in the plug-in manifest file
without writing any code, so choose the Create a simple project radio button and click on the Finish
button.

4. If asked if you would like to switch to the Plug-in Development perspective, answer Yes.

5.3 Creating the Extension

You have added the required plug-ins to your workspace instance and you have a brand new project with an empty
manifest file. We are now ready to add our tool chain definition to the managed build system by extending the
ManagedBuildInfo extension point.

1. Double click on the org.eclipse.cdt.example.toolchain project in the Package Explorer to
expand it. Double click on the plugin.xml file to edit its contents.

2. We have to add a dependency between our project and the org.eclipse.cdt.managedbuilder.core
plug-in where the extension point is defined. Click on the Dependencies tab located along the bottom of
the manifest editor. Click the Add… button located beside the Required Plug-Ins list. Select org.
eclipse.cdt.managedbuilder.core from the list and then click the Finish button.

3. Select the Extensions tab located along the bottom of the manifest editor. Click the Add… button located
beside the All Extensions list. Make sure that Generic Wizards is selected in the left-hand list, and
Schema-based Extensions from the right, and then click the Next > button.

4. You should now be on the Extension Point Selection page. Make sure that the Show only extension
points from the required plug-ins check-box is selected. Select org.eclipse.cdt.managedbuilder.
core.ManagedBuildInfo from the list of extension points. Use org.eclipse.cdt.example.
toolchain as the Point ID for the extension, and Example Tool Chain for the Point Name. Click the
Finish button.

5.4 Adding a Target

Now we will add a new target, configuration, and an example tool to the extension.

1. Right click on org.eclipse.cdt.managedbuilder.core.ManagedBuildInfo to access the context
menu. Select New > target to add a target definition. A new target named org.eclipse.cdt.example.
toolchain.target[n] should appear below the extension point. Right click on the new target to access
the context menu and select Properties to open the properties editor for the new entry.

2. Let’s give the new target a better name. Locate the name property in the Properties browser and click on
the row to edit the value of the property. For now, let’s use the name Example Executable for our target.

3. Set the value of the binary parser property based on the platform you will be using to create your example
projects on. For example, if you are running this tutorial on Linux or Solaris, enter the value org.eclipse.
cdt.core.ELF. If you are running the tutorial on Windows, enter the value org.eclipse.cdt.core.PE.

4. Now set the clean command for the target. For the purposes of this example, click on the cleanCommand
property to edit it and enter rm –f.

5. Do the same for the make command. Locate the makeCommand property, click on it to edit the value, and
enter make.

6. We want the new target to appear when we run the new project wizard on our host platform, so we have to

define the operating systems that the target should be visible on. Locate the osList property and click it to
edit the value. Enter win32 if you are running the tutorial on Windows, linux if you are running on one of
the Linux distributions, or solaris if you are running on a version of Solaris.

5.5 Adding a Configuration

We have now added a basic target definition. We now want to define a default configuration. Normally, you would
consider defining both a release and debug configuration, but we want to keep this example simple so we will
restrict ourselves to a single configuration.

1. Right click on Example Executable in the All Extensions list. From the context menu select New >
configuration. Click on the new configuration to bring up its properties in the property browser.

2. Click on the name property and edit the value to be Test Configuration.

5.6 Adding a Tool

We could now run the new project wizard and create a new managed project based on this target, but before we
do that, let’s define a tool for the target.

1. Right click on Example Executable to get the context menu and select New > tool. Give the tool the name
Compiler.

2. Tools declare which file extensions they operate on and, optionally, the file extensions they produce. Our
imaginary compiler only works on files with a ‘c’ or ‘C’ extension. Locate the sources property and set its
contents to be a comma-separated list containing c,C. Note that there should not be any spaces between
the values. Let us assume that the output of the compiler is an object module that has the extension ‘o’. Set
the value of the outputs property of the tool to o.

3. Let us assume that the tool should appear for both C and C++ projects, although this is not always the
case. Locate the natureFilter property and select both from the list of choices.

4. The build model needs to know if there are any special file extensions that indicate a file is a ‘header’ file.
Set the headersExtension property to be a comma-separated list containing h,H.

5. Tools often have a flag to specify the output of a tool. For the purposes of this example, set the outputFlag
property to -o.

6. Finally, we want to specify the command that is needed to invoke the tool. For this example, we are not
interested in actually calling a real tool, so just enter ccc as the value for the command property.

5.7 Testing the Target

We have now defined enough information to create a project for our new example target, so let’s go test it out.

1. Make sure our example project is selected in the Package Explorer. Select Run > Debug As > Run-time
Workbench to start a new run-time workbench instance that includes the new tool information you have
created. You may be prompted to save the resource you were editing. If prompted, answer Yes.

2. In the new workspace, open the C/C++ Development Perspective.
3. Run the new project wizard. From the Selection page choose either a managed C or C++ project. Click the

Next > button, give your project any name you wish, and click Next > again. Note, if the wizard does not
display a next button, you have probably forgotten to specify the make and clean commands. You will have
to add this information to the tool chain definition and restart your debugging session.

4. You should now be at the Select a Target page. Your new target will appear as a choice in the Platform

selection widget. Select it and note that the list of available configurations now contains the single
configuration we defined for the target. Click Finish.

5. Right click on your new project in the Navigator or C/C++ Project view to access the context menu, and
select Properties to open the property browser for the project. Select C/C++ Build from the choices and
note that the tool we defined appears in the list.

At this point, you have no doubt noticed that the property page does not have any way to edit the settings for the
tool. That is because we have not defined any options yet. It is time to edit the tool chain definition again.

5.8 Adding Tool Options

Users expect to be able to change the settings for their build tools through the property page for a project. What
they see is controlled by the way options are defined in the tool chain specification. We will create an option
category, and then add two example options to it.

1. Switch back to the Plug-in Development perspective. Right click on the Compiler entry in the extension
description to bring up the context menu. Select New > optionCategory to add the category. Set the name
of the category to General.

2. You must specify the id of the tool the category belongs to in the owner property. The simplest way to do
this is to copy the id from the compiler and paste it into the owner property of the category. Click on the
Compiler entry to open its properties. Right click on the id property as though you were going to edit it.
Instead of typing, hit ctrl-c. Switch back to the option category, right click the owner property and hit ctrl-v.

3. Set the unique id of the category to anything you want, for example example.toolchain.cat.comp.
4. Right click on the tool, not the category, to bring up its context menu and select New > option to add our

first option. Name the option Include paths and set the valueType property to includePath from the
list of choices. Please refer to section 2.7 for a description of value types and options. In the command
property, enter -I. In the category property, put the unique id of the category that you entered in step 3.

5. Add another option to the compiler. Set its name to Other flags. Set its valueType to string, its
category to be the id you created in step 3, and its defaultValue to -c.

At this point, you can test how your options appear in the UI by debugging your run-time workbench. You should
see something like this.

Figure 9 Property page with tool and category

5.9 Taking the Next Step

The purpose of the tutorial you just followed was to become familiar with the steps involved in creating a simple
tool chain, and to get a feeling for how the choices you make in the specification of options affect the UI. In this
section, we will discuss some additional points that you need to consider before specifying your own tool chain.

5.9.1 Adding More Tools

Unless you just happen to have a compiler on your system that is invoked with ‘ccc’, the example tool we created is
not going to build anything. Further, the tool we defined transforms source files into object files. Another tool, like a
linker, would be needed to transform those object files into a final build goal. For most targets, defining a compiler
and “something else” is usually sufficient, but you may have to define additional tools if your tool chain requires
intermediate build steps to function properly.

5.9.2 Defined Symbols and Header File Search Paths

There are elements of the CDT core that require build information to function properly. Things like the indexing
service, search, or code-assist will only function correctly if the built-in parser can retrieve information about the
paths to search for include files and the preprocessor symbols defined for the project. The build model only
promises to store the type and value of an option, it does not know anything about the contents. However, you can
flag certain options as special so the build model will know to pay special attention to them. As the implementer of
the tool chain, you should make sure your specification has options of type “includePaths” and “definedSymbols”.
The build model will pay special attention to these options and answer them to the appropriate clients in the CDT
core without any further intervention on your part.

5.9.3 Built-in Symbols and Search Paths

Every compiler relies on having a correct set of preprocessor symbols and header file search paths to perform
proper builds. Even compiler from the same vendor may use different symbols and search paths when building for
different operating systems. Some of these values may be defined by the user, but others will be built into the tools
themselves so the user will be unaware of them. Unfortunately, the CDT parser needs to know about the entire set
to properly parse source files.

There are two approaches you can take, but both involve pre-populating the include path and defined symbol
options with list option values containing the correct information. If you add a value to the include path or symbol
option, it will be displayed to the user by default. This may be the right approach to take if you believe that users
will change these values frequently. However, it will clutter the UI with values and since they are editable, users
may delete them accidentally.

The alternative is to flag the list option value as a built-in value. In this case, the user will not be able to edit the
values through the UI. This has the advantage of keeping the UI cleaner, but the only way for the user to edit these
values if something changes is to directly edit the plug-in manifest where the extension is specified.

The CDT team is currently developing a mechanism to specify this information in an extensible way. In the current
release however, we are relying on the implementers of a tool chain to supply the default symbols and paths in
their specification. Please refer to section 2.9 for more details on specifying list option values.

5.9.4 User-Specified Libraries and Object Modules

Similarly, a user may want to specify external libraries to link against in the final build step. The build model needs
to be told to pay special attention to an option containing libraries so that when the makefile generator requests
them, it can answer a valid list. Flag the option value type as “libs” for external libraries or “userObjs” for object
modules.

5.9.5 Target Hierarchies

One area of the build model that the tutorial does not touch on is the concept of abstract targets discussed in
section 2.2.1. It would be quite time consuming, not to mention error prone, if you had to redefine common tools or
properties each time you wanted to create a new target. Instead, the build model allows you to organize targets
into hierarchies that promote the sharing of common property settings and tools between related targets. When you
create a parent target though, you may not want that target to be selected by the user in the new project wizard. In
that case, make the target abstract and it will no longer appear as an option for users. Flagging a target as abstract
is a UI design decision; you can declare a non-abstract target as the parent of another target. You just have to be
sure that you want the user to be able to create a new project based on the parent as well as the child.

5.9.6 Publishing your Plug-in

The subject of packaging Eclipse plug-ins is well covered in the Platform Plug-in Developer Guide. It is strongly
recommended that you review this information carefully if you plan on deploying products based on Eclipse.
However, making your tool-chain specification available to other users of Eclipse is not difficult. You must supply
the plugin manifest we created inside the Eclipse platform's plug-in directory. The plug-in directory is named
plugins and is typically located underneath the main directory where you installed the Eclipse platform.

1. From the Plug-in Development Perspective, select the plugin.xml file for your plug-in in the package
explorer. Open the File > Export... wizard. On the Select page, chose File system from the export

destination list. Click the Next > button.
2. Make sure that org.eclipse.cdt.example.toolchain is selected in the left-hand list and that only

plugin.xml is selected in the right. To select an export destination, click the Browse... button beside the
entry widget labelled To directory. Browse to the plugins subdirectory of your Eclipse installation. Click the
Finish button.

3. Restart Eclipse, switch to the C/C++ Development Perspective and run the new project wizard to create a
new project based on your tool-chain specification.

Debug

This section describes CDT debug concepts.

Breakpoints
Debug overview
Debug information
Error Parsing
Invoking Make

Breakpoints

A breakpoint suspends the execution of a thread at the location where the breakpoint is set. To set a
breakpoint, right-click in the frame on the left side of an editor beside the line where you want the
breakpoint, then choose Add Breakpoint.

Once set, a breakpoint can be enabled and disabled by right-clicking on its icon or by right-clicking on
its description in the Breakpoints view.

● When a breakpoint is enabled, it causes a thread to suspend whenever it is hit. Enabled

breakpoints are indicated with a blue circle. Enabled breakpoints that are successfully
installed are indicated with a checkmark overlay.

● When a breakpoint is disabled, it will not cause threads to suspend. Disabled breakpoints are

indicated with a white circle.

Debugging breakpoints are displayed in the marker bar in the editor area and in the Breakpoints view.

Note: Execution will also suspend if Stop at main() on startup is enabled on the Launch
Configuration dialog. To access the Launch Configuration dialog, from the menu bar choose Run >
Debug.

Run menu
Breakpoints view

Debug overview

The debugger lets you see what's going on "inside" a program while it executes.

In order to debug your application, you must use executables compiled for debugging. These
executables contain additional debug information that lets the debugger make direct associations
between the source code and the binaries generated from that original source.

The CDT debugger uses GDB as the underlying debug engine. It translates each user interface action
into a sequence of GDB commands and processes the output from GDB to display the current state of
the program being debugged.

Tip: Editing the source after compiling causes the line numbering to be out of step because the debug
information is tied directly to the source. Similarly, debugging optimized binaries can also cause
unexpected jumps in the execution trace.

Overview of the CDT
Debug information

Debugging

Run and Debug dialog box

Debug information

The Debug perspective lets you manage the debugging or running of a program in the Workbench. You
can control the execution of your program by setting breakpoints, suspending launched programs,
stepping through your code, and examining the contents of variables.

 The Debug perspective displays the following information:

● The stack frame for the suspended threads for each target that you are debugging
● Each thread in your program represented as a node in the tree
● The process for each program that you are running

The Debug perspective also drives the C/C++ Editor. As you step through your program, the C/C++
Editor highlights the location of the execution pointer.

Variables

You can view information about the variables in a selected stack frame in the Variables view. When
execution stops, the changed values are by default highlighted in red. Like the other debug-related
views, the Variables view does not refresh as you run your executable. A refresh occurs when execution
stops.

Expressions

An expression is a snippet of code that can be evaluated to produce a result. The context for an
expression depends on the particular debug model. Some expressions may need to be evaluated at a
specific location in the program so that the variables can be referenced. You can view information about
expressions in the Expressions view.

Registers

You can view information about the registers in a selected stack frame. Values that have changed are
highlighted in the Registers view when your program stops.

Memory

You can inspect and change your process memory.

Shared libraries

You can view information about the shared libraries loaded in the current debug session.

Signals

You can view the signals defined on the selected debug target and how the debugger handles each one.

Overview of the CDT
Debug overview

Debugging

Run and Debug dialog box
Debug views

C/C++ search

You can conduct a fully or partially qualified name search. Further qualifying a search increases the
accuracy and relevance of search results. The sections below provide guidance on how to control the
scope of your search through the use of search delimiters, correct syntax, and wildcards.

You can search for:

● language constructs within:
❍ projects in your workspace
❍ selected resources from various views
❍ working sets

● a working set for references to particular elements
● declarations of particular elements
● definitions of particular elements
● references of particular elements

For information on working sets, see Workbench User Guide > Concepts > Workbench > Working
sets

What you can search for

The table below lists the element types that you can search for and special considerations to note when
searching for a given element type. You can search for some or all of the element types matching a
search string that you specify. If you choose to search for matching elements, all types, macros, and
typdefs are included in the search.

Element Note

 Class/Struct

Searches for classes and structs.

You can further qualify the search by
specifying "class" or "struct" in front of the
name that you are searching for. Specifying
"class" or "struct" also allows you to search for
anonymous classes and structures.

 Function

Searches for global functions or functions in a
namespace (functions that are not members of a
class, struct, or union).

You can specify parameters to further qualify
your search. When specifying a parameter list,
everything between the parentheses should be
valid C/C++ syntax.

Do not specify the return type of the function.

 Variable
Searches for variables that are not members of a
class, struct, or union.

 Union

Searches for unions.

Anonymous unions can be searched for by
specifying "union" as the search pattern.

 Method

Searches for methods that are members of a
class, struct, or union.

Searching for methods also finds constructors
and destructors. See above note for functions.

 Field
Searches for fields that are members of a class,
struct, or union.

 Enumeration Searches for enumerations.
 Enumerator Searches for enumerators.
 Namespace Searches for namespaces.

How you can limit your search

You can limit your search to one or all of the following:

● Declarations
● References
● Definitions (for functions, methods, variables and fields)

You can control the scope of the search by specifying which of the following is to be searched:

● Workspace
● Working Set
● Selected Resources

Wildcard characters

You can use wildcard characters to further refine your search.

Use this wildcard character To search for this

 *

Any string

Tip:
Use the character * to search
for operators that begin with *.
See syntax examples in the
table below.

 ? A single character
 :: Nested elements

Tip: Do not use wild cards between the brackets of a function or method pattern. For example, the
search string f(*) is an invalid search that results in a search for any function f because the asterisk
is interpreted as a pointer rather than a wild card.

Syntax examples

The table below provides syntax examples and an explanation for each example to help you conduct an
effective search.

Syntax Searches for this

 ::*::*::A
A nested element
two levels deep

 ::*::*::A?
Any two-letter name
that begins with A
and is two levels deep

 ::A
Searches for A not
nested in anything

 *()
Any function taking
no parameters

 *(A *)
Any function taking
1 parameter that is a
pointer to type A

 f(int *)

Will search for
function f taking 1
parameter that is an
int *

 f(const char [], A &)

Will search for a
function f, taking 2
parameters; one is a
const char array, the
other is a reference to
type A

 operator * Finds only operator *

 operator *=
Finds only operator
*=

 operator * Finds all operators

 class
Searches for
anonymous classes

 struct
Searches for
anonymous structs

 union
Searches for
anonymous unions

Search results

Search results are displayed in the Search view. You can sort your search by Name, Parent Name and
Path. You can also repeat your last search.

Search Concepts

Declarations

According to the ANSI C++ Spec, a declaration is a statement that “introduces a name into a translation
unit or re-declares a name that has been previously introduced by a previous declaration.

All C/C++ search elements can be searched for declarations.

Definitions

Most declarations are also definitions; in other words, they also define the entity for they declare the
name for. However there are some elements that can have separate definitions from their declarations.

For C/C++ search the following elements can be searched for definitions:

● Functions/Methods – the definition is where the code implementation resides
● Variable:

1. Extern – the definition is where the variable is initialized
2. Non extern - the definition of a variable is where it is declared

● Field:
1. Static fields - the definition of a static field is where it gets initialized
2. Non static fields - the definition corresponds to the fields declaration

● Namespace – the definition of a namespace is the same as its declaration

References

By selecting references, C/C++ search will return all of the places the selected element is used.

All Occurrences

Selecting ‘All Occurrences’ in the Limit To section will result in a search for declarations, definitions (if
applicable) and references for whatever element or elements have been selected.

Any Element

Selecting ‘Any Element’ in the Search For section will result in a search for all of the listed elements
plus macros and typedefs.

For more information, see:

● Workbench User Guide > Concepts > Views > Search view
● Workbench User Guide > Tasks > Navigating and finding resources

C/C++ Indexer
CDT Projects
Open Declarations

Searching for C/C++ elements
Navigating to C/C++ declarations

C/C++ search page, Search dialog box
C/C++ perspective icons

C/C++ Indexer

The C/C++ indexer uses the parser to create a database of your source and header files that provides the
basis for C/C++ search, navigation features and parts of content assist.

The indexer runs on a background thread and reacts to resource change events such as:

● C/C++ project creation/deletion
● Source files creation/deletion
● File imports
● Source file content changes

It is possible to customize the behavior of the indexer through the use of source folders or even turn it
off completely. This customizable behavior is available on a per-project basis (i.e. it is possible to have
different indexer settings for each project in your workspace).

C/C++ search
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

C/C++ Indexer Problem Reporting

C/C++ Index Problem reporting places a problem marker on the editor and adds an item to the error list
for each preprocessor or semantic problem reported by the parser. Note that the markers will only show
up the next time the file is indexed.

Note: This feature is not recommended for large projects.

Preprocessor Problems

In order for search and search related features to work properly, it is imperative that include paths are set
up properly so that the parser can find source files and index them. If you suspect that your search
results are lacking, you can turn on the preprocessor problem markers. These will place a marker on the
line that has the preprocessor problem.

This includes:

● Pound error
● Inclusion not found
● Definition not found
● Invalid macro definition
● Invalid directive
● Conditional evaluation error

Semantic Problems

The problem markers can also indicate semantic errors in your code.

The errors flagged include:

● Name not found
● Invalid overload
● Invalid using
● Ambiguous lookup
● Invalid type
● Circular inheritance
● Invalid template

C/C++ search
C/C++ Indexer
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

C/C++ Indexer Opening or Closing a project

The user opening a previously closed project results in the entire project being re-indexed.

Closing a project results in the index being deleted. Search features will not reperot any results for
closed projects.

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer – Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

C/C++ Indexer Progress Bar

The indexer progress bar shows the progress status of the indexing jobs in the progress views.

The indexing jobs can be temporarily paused by pressing the stop button on the progress bar. This will
cause the indexer to wait until the next time the user runs a search job or makes a change to an indexed
element (by such actions as modifying an existing source file, deleting a file, creating a new file, moving
file and so on). The indexer at this point will resume with the previously postponed indexing job before
moving on to the new one.

If you wish to cease indexing all together, you can cancel an indexing job and disable the indexer
through the properties.

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

Searching External Files

C/C++ search, by default, will only search your workspace. If you wish to search external files that are
included by files in your workspace but don’t reside in your workspace, you must enable external search
markers.

When a match in an external file is now found, it will be linked into your project and you will be able to
open the match from the search pane as usual.

When a project is closed, or the workbench is shutdown the links are removed.

C/C++ search

Searching External Files

Search, C/C++ Preferences window
C/C++ search page, Search dialog box

file:///C|/test/docs/tasks/cdt_t_search_ext.htm

Tasks
Task topics provide step-by-step procedural instructions to help you perform required tasks.

Creating a project
Working with C/C++ project files

Displaying C/C++ file components in the C/C++ Projects view
Converting a C or C++ nature for a project
Creating a C/C++ file
Creating a makefile
Hiding files by type in the C/C++ Projects view
Converting CDT 1.x Projects
Adding Convert to a C/C++ Make Project to the New menu
Set Discovery Options

Writing code
Customizing the C/C++ editor
Commenting out code
Working with Content Assist

Using Content Assist
Creating and editing code templates
Importing and exporting code templates

Shifting lines of code to the right or left
Navigating to C/C++ declarations
Refactoring

Building projects
Renaming a project
Selecting referenced projects
Defining build settings
Filtering errors
Selecting a binary parser
Adding Include paths and symbols
Selecting a deployment platform
Setting build order
Building Manually
Removing Build Automatically
Autosaving on a build
Creating a make target
Customizing the Console view
Viewing and managing compile errors

Jumping to errors
Filtering the Tasks view
Setting reminders

Running and debugging projects
Creating or editing a run/debug configuration

Selecting a run or debug configuration
Creating a run or debug configuration
Selecting an application to run or debug
Specifying execution arguments
Setting environment variables
Defining debug settings
Specifying the location of source files
Specifying the location of the run configuration

Debugging
Debugging a program
Working with breakpoints and watchpoints

Adding breakpoints
Adding watchpoints
Removing breakpoints and watchpoints
Enabling and disabling breakpoints and watchpoints

Controlling debug execution
Stepping into assembler functions
Working with variables
Adding expressions
Working with registers
Working with memory

Searching for C/C++ elements
Selection Searching for C/C++ elements
Searching External Files
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

file:///C|/test/docs/tasks/cdt_t_search_ext.htm

Creating a project
You can create a standard make or managed make C or C++ project.

To create a project:

1. Click File > New > Project.

2. In the New Project wizard, click C or C++.
3. Choose either a Standard Make C++ Project or a Managed Make C++ Project.

4. Click Next.
5. In the Name box, type a name.
6. To specify a different directory in which to save your project, clear the Use Default Location check

box, and enter the path in the Location box.
7. For managed make projects, click Next to select a deployment platform. For more information, see

Selecting a deployment platform.
8. To create your project, click Finish.

9. If a message box prompts you to switch perspectives, click Yes.
10. Define your project properties. For more information, see Defining project properties.

CDT Projects
Project file views

Working with C/C++ project files

Project properties
Views

file:///C|/test/docs/tasks/cdt_o_proj_prop.htm

Working with C/C++ project files
This section explains how to create and manage project files.

Displaying C/C++ file components in the C/C++ Projects view
Converting a C or C++ nature for a project
Creating a C/C++ file
Creating a makefile
Hiding files by type in the C/C++ Projects view
Converting CDT 1.x Projects
Adding Convert to a C/C++ Make Project to the New menu
Set Discovery Options

Displaying C/C++ file components in the C/C++ Projects
view
File components are displayed in the C/C++ Projects view and in the Outline view. You can display or hide all file
components in the C/C++ Projects view.

To display file components

1. Click Window > Preferences.
2. In the Preferences dialog box, select C/C++ from the list.

3. Select the Show file members in Project View check box.
4. Click OK.
5. In the C/C++ Projects view, double-click a file component.

The component is highlighted in the C/C++ editor.

The C/C++ Projects view can also be filtered to show certain types of file components. For more information, see
Hiding files by type in the C/C++ Projects view.

CDT Projects
Project file views

Hiding files by type in the C/C++ Projects view
Searching for C/C++ elements
Navigate to C/C++ declarations

C/C++ editor, code templates and search preferences

Converting a C or C++ nature for a project
You can assign a C nature to a C++ file or vice versa.

To assign a C or C++ nature to a project

1. Click File > New > Other.

2. Click C or C++.
3. Click Convert to C/C++ Make Project.
4. Click Next.
5. In the Candidates for conversion list, select the projects to convert.
6. In the Convert to C or C++ box, click C Project or C++ Project.
7. Click Finish.

CDT Projects
Project file views

Writing code

Project properties

Creating a C/C++ file
Files are edited in the C/C++ editor that is by default, located in the editor area to the right of the C/C++
Projects view.

The marker bar on the left margin of the C/C++ editor, displays icons for errors, warnings, bookmarks,
breakpoints and tasks.

For more information on the marker bar, see Workbench User Guide > Reference > User interface
information > Views and editors > Editor area.

To create a C++ file:

1. In the C++ Projects view, right-click a project, and select New > File.

2. In the list of projects, verify that the correct project is selected.
3. In the File name box, type a name followed by the appropriate extension.
4. Click Finish.

The file will open in the C/C++ editor.

5. Enter your code in the editor view..

6. Type CTRL+S to save the file.

CDT Projects
Project file views

Displaying C/C++ file components in the C/C++ Projects view
Hiding files by type in the C/C++ Projects view

Project properties

Creating a makefile
If you have created a Standard Make C/C++ Project, you need to provide a makefile.

When you build a project, output from make is displayed in the Console view. Makefile actions are
displayed in the Make Targets view.

To create a makefile:

1. In the C++ Projects view, right-click a project, and select New > File.

2. In the File name box, type makefile.
3. In the list of projects, verify that the correct project is selected.
4. Click Finish.

5. The C/C++ editor opens. Type makefile instructions in the C/C++ editor.

6. Click File > Save.

Makefile
Working with C/C++ project files

Displaying C/C++ file components in the C/C++ Projects view
Hiding files by type in the C/C++ Projects view

Views

Hiding files by type in the C/C++ Projects view
You can hide files by type that you do not want to see in the C/C++ Projects view.

To hide files by type:

1. In the C/C++ Projects view, click the Menu icon .

2. Click Filters.

3. Select the file types that you want to hide.
4. Click OK.

The C/C++ Projects view refreshes automatically.

CDT Projects
Project file views

Displaying C/C++ file components in the C/C++ Projects view
Hiding files by type in the C/C++ Projects view

Views

Converting CDT 1.x Projects
There are two ways to update CDT 1.x projects to CDT 2.0, after they have been imported, either restart
eclipse, or update them using the Convert to C/C++ Make Project Wizard.

Note: the project must first be imported into your workspace using File > Import > Existing Project into
Workspace before you can update the project.

For more information on importing projects see Workbench > Tasks > Importing > Importing Existing
Projects.

Restart Eclipse

When Eclipse starts, the CDT 1.x project will be detected and you will be prompted to update the project.

Click Yes and the project will be updated.

Convert to C/C++ Make Project Wizard

Select File > New > Convert to a C/C++ Make Project. If that selection is not available, you can find the
instructions for adding it here.

From the Convert to C/C++ Make Project Wizard select the project you want to convert and click Finish.

Note: You may need to manually enable Path Discovery for CDT 1.x Standard Make projects, depending
on how your CDT project was configured. See Set Discovery Options for details.

Adding Convert to a C/C++ Make Project to the New menu
Set Discovery Options

Adding Convert to a C/C++ Make Project to the New menu
If Convert to a C/C++ Make Project is not available in your menubar, you can add it by clicking Window >
Customize Perspective

From the Customize Perspecive Wizard select Convert to a C/C++ Make Project and click OK.

Note: Ensure New is selected in the Submenus: list.

The File > New > Convert to a C/C++ Make Project option will now be available.

Converting CDT 1.x Projects

Set Discovery Options
For most standard make projects you will want to parse the output of the build to populate your paths and symbols tables.

To do so right click on your project and select Properties > C/C++ Make Project > Discovery Options and select the
Automate discovery of paths and symbols checkbox.

Converting CDT 1.x Projects
C/C++ Project Properties, Standard, Discovery Options

Writing code
This sections explains how to work with the C/C++ editor.

Customizing the C/C++ editor
Commenting out code
Working with Content Assist

Using Content Assist
Creating and editing code templates
Importing and exporting code templates

Shifting lines of code to the right or left
Searching for C/C++ elements
Selection Searching for C/C++ elements
Navigating to C/C++ declarations
Refactoring

Customizing the C/C++ editor
You can change many of the C/C++ editor preferences.

To customize the C/C++ editor preferences:

1. Click Window > Preferences.

2. Expand C/C++, and click C/C++ Editor.

3. To set general preferences for the editor click the General tab.

4. On the General Page set your preferences and click Apply. For a description of the General preferences click here.

5. To customize the color of the text in the editable area of the C/C++ editor, click the Colors tab.

6. On the Colors page set your preferences and click Apply. For a description of the Color preferences click here.

7. To customize Content Assist preferences, click the Content Assist tab. For more information, see Using Content Assist

8. Click OK.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

Commenting out code
You can comment out one or more lines of code. The leading characters // are added to the beginning of
each line.

Tip: The characters /* */ on lines that already are already commented out are not affected when you
comment and uncomment code as described above.

To comment out code:

1. In the C/C++ editor, select the line(s) of code that you want to comment out. If no lines are selected
comments will be added (or removed) at the current cursor positition.

2. Right-click and do one of the following:
❍ To comment out the selected code, select Comment.
❍ To remove the leading // characters from the selected line(s) of code, select Uncomment.

Tip: Instead of using the context menu (right click) you can quickly comment out by pressing CTRL+/ or
remove comments by pressing CTRL+\.

Code entry

Customizing the C/C++ editor
Working with Content Assist

C/C++ editor, code templates and search preferences

Working with Content Assist
This section provides information on code entry aids.

Using Content Assist
Creating and editing code templates
Importing and exporting code templates

Using Content Assist
Use Content Assist to insert C/C++ elements of your project, and code templates into your code. You can insert a code template into
your source code rather than retyping commonly-used snippets of code.

To insert a code template or element:

1. In the C/C++ editor, type at least the first letter of a code template or element then Ctrl+Space.
A list displays the code templates followed by the elements that start with the letter combination you typed.

2. Do one of the following:
❍ Continue typing. The list shortens. When there is only one item in the list, it is automatically inserted.
❍ Double-click an item in the list to insert it into your code.
❍ Press Esc to close the Content Assist Window.

To set Content Assist preferences:

1. Click Window > Preferences.
2. Expand C/C++, and click C/C++ Editor.
3. Click the Content Assist tab.

4. Do the following:
❍ To change the scope from which Content Assist retrieves its proposals, select either Search current file and

included files or Search current project by selecting the appropriate the radio button.
❍ To insert an element when you open Content Assist and it is the only item in the list, select the Insert single

proposals automatically check box.
❍ To automatically insert a proposal, if it is the only one found when Content Assist is invoked, select the Enable auto

activation checkbox.
❍ To display proposals in alphabetical order, rather than by relevance, select the Present proposals in alphabetical

order checkbox.
❍ To change the amount of time Content Assist is permitted to parse proposals enter the value for Content Assist

parsing timeout in the text box area.
❍ Enable Auto activation of content assist for ".", "->" or "::" triggers by selecting the appropriate checkboxes.
❍ To change the delay before Content Assist is automatically invoked for the triggers (shown above), enter the new

delay in the Auto activation delay text box area.
❍ To change the background color of the Content Assist dialog box, click the color palette button.
❍ To change the foreground color of the Content Assist dialog box, click the color palette button.

5. Click OK.

Content Assist

Creating and editing code templates
Importing and exporting code templates

Content Assist page, Preferences window
Code Templates page

Creating and editing code templates
Content Assist uses code templates enable you to use commonly used code snippets quickly.

To create a code template:

1. Click Window > Preferences.
2. Expand C/C++, and click Code Templates.
3. Click New.

4. Do the following: (if required)

❍ In the Name field, enter a template name.
❍ Select Structure, Global or Function for either C or C++ from the Context drop down list.
❍ In the Description field, enter a description for your new code template.
❍ In the Pattern field, enter the code for your template.
❍ Click Insert Variable to add a variable from the list to the code you have entered in the

Pattern box.

5. Click OK.
The new code template is now displayed in the list.

To edit a code template:

1. Click Window > Preferences.
2. Expand C/C++, and click Code Templates.
3. Click Edit. The New Template dialog box opens.

4. Do the following:

❍ In the Name field, change the template name to create a new template based on the
current template.

❍ Select Structure, Global or Function for either C or C++ from the Context drop down list to
select where the template will appear.

❍ In the Description field, change the description of the code template to reflect your
changes.

❍ In the Pattern field, edit the code.
❍ Click Insert Variable to add a variable from the list to the code you have edited in the

Pattern box.

5. Click OK.

Content Assist

Using Content Assist
Importing and exporting code templates

Code Templates page, Preferences window
Code Templates page

Importing and exporting code templates
You can import and export code templates.

Note: A code template must be an .xml file formatted as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<templates>
<template name="author" description="author name" context="C" enabled="true">author ${user}</template>
</templates>

To import a code template

1. Click Window > Preferences.
2. Expand C/C++, and click Code Templates.
3. Click Import.
4. Select the template file that you want to import.
5. Click OK.

The code template list is updated to include the template that you imported.

To export a code template

1. Click Window > Preferences.
2. Expand C/C++, and click Code Templates.

3. Select the templates that you want to export and click the Export... or Export All... button. The Exporting x dialog opens
where x is the number of code templates that you are exporting.

4. In File name box, type the path where you want your code templates file to be saved.
5. Click Save.

The templates.xml file containing the code templates you exported is saved in your file system.

Content Assist

Using Content Assist
Creating and editing code templates

Code Templates page, Preferences window
Code Templates page

Shifting lines of code to the right or left
You can shift lines of code to the left or right in the C/C++ editor. You can change the tab width in the C/C+
+ editor preferences window. For more information, see Customizing the C/C++ editor.

To shift lines of code to the right or left:

1. In the C/C++ editor, select the full length of the lines that you want to shift.
2. Do one of the following:

❍ To move the text to the right, press Tab.
❍ To move the text to the right, click Edit > Shift Right.
❍ To move the text to the left, press Shift+Tab.
❍ To move the text to the left, click Edit > Shift Left.

Code entry

Customizing the C/C++ editor

C/C++ editor, code templates and search preferences

Navigating to C/C++ declaration
The Open Declaration feature lets you navigate to the declaration that matches a selected element in the
C/C++ editor. It is recommended that you look for element declarations on successfully compiled
programs.

To navigate to C/C++ declaration:

1. In the C/C++ editor, select an object.
2. Right-click the selected element, select Open Declaration.

For more information, see:

● Workbench User Guide > Tasks> Navigating and finding resources

Open Declarations
CDT Projects
C/C++ search

Searching for C/C++ elements

C/C++ search page, Search dialog box

Refactoring
Use the C/C++ Projects, Outline, or the Editor view Refactor > Rename context menu to refactor class &
type names, methods, function & member names.

To refactor an object select the object, right click and select Refactor > Rename...

The refactoring engine will rename all instances of the object in all referenced files. You can Undo
refactoring by right clicking a second time and selecting Refactor > Undo

Open Declarations
CDT Projects
C/C++ search

Searching for C/C++ elements

C/C++ search page, Search dialog box

Building projects
This sections explains how to build your project and manage compile errors.

Renaming a project
Selecting referenced projects
Defining build settings
Filtering errors
Selecting a binary parser
Adding Include paths and symbols
Selecting a deployment platform
Setting build order
Building Manually
Removing Build Automatically
Autosaving on a build
Creating a make target
Customizing the Console view
Viewing and managing compile errors

Jumping to errors
Filtering the Tasks view
Setting reminders

Renaming a project
You can rename a project, and have all references changed using the refactoring engine.

To rename a project:

1. In the C/C++ Projects view, right-click a project, and select Rename.

2. Type a new name.
3. Press Enter.

Note: Renaming a project causes it to be re-indexed. This can take a significant amount of time for very
large projects.

CDT Projects
Project file views

Working with C/C++ project files

Project properties

Selecting referenced projects
The Referenced C/C++ Projects list on the Projects References page for a given project, displays every project in
your workspace in the build order you specify. For more information, see Setting build order.

Projects selected in the list are built before the current project according to their dependencies. The least used
projects are built first.

To select referenced projects:

1. In the C/C++ Projects view, right-click a project, and select Properties.

2. On the left, select Project References from the list.
3. In the Project references... list, select referenced projects..

4. Click OK.

CDT Projects
Project file views

Working with C/C++ project files

Project properties

Defining build settings
The Make Builder page lets you:

● Configure how the CDT handles make errors.
● Change the default build command.
● Map the target passed to make when you select build or rebuild.

You can define the properties on a per project basis in the New Project wizard, in the C/C++ Projects view or in the Navigator
view. You can also define project properties in the Preferences window for future standard make projects.

Before you begin

In order to be able to turn on or to turn off the feature that automatically performs an incremental build of your project every
time a resource is saved for individual projects, you need to enable the Workbench Build Automatically preference. You can
then disable this feature or change the associated make target for individual projects.

To enable build on resource save:

1. Click Window > Preferences.
2. To automatically perform an incremental build of your project every time a resource is saved, select Workbench from

the list.
3. Select the Perform build automatically on resource modification check box.

Note: this is the default setting.

You can now enable or disable this feature on a per project basis.

To define build settings:

1. Do one of the following:
❍ Click Window > Preferences. Expand C/C++, click New Make Projects.
❍ In the C/C++ Projects view, right-click a standard make project, and select Properties. Select C/C++ Make

Project from the list.

2. Click the Make Builder tab.
3. Do one of the following:

❍ To stop the build when an error is encountered, select Stop on first build error.

4. Select one of the following build command settings:
❍ To use the default make command, select the Use Default check box.
❍ To use a build utility other than the default make command Build Command box, clear the Use Default check

box .

5. In the Workbench Build Behavior box, do the following:
❍ To build your project when resources are saved and change the default make build target, select the Build on

resource save (Auto Build) check box. Enter a new build target in the Make build target box.
❍ To change the build default make build target, select the Build (Incremental Build) check box. Enter a new

build target in the Make build target box.
❍ To change the rebuild default make build target, select the Rebuild (Full Build) check box. Enter a new build

target in the Make build target box.

6. Click the Finish.

CDT Projects
Project file views

Working with C/C++ project files

Make Builder page, C/C++ Properties window

Filtering errors
The Error Parsers page of the Properties window lists a set of filters that detect error patterns in the build
output log.

If an error or warning is detected, an icon appears on the file in the Tasks view. If the file is not found, the
icon appears on the project.

You can define the properties on a per project basis in the New Project wizard, in the C/C++ Projects view
or in the Navigator view. You can also define project properties in the Preferences window for future
standard make projects.

To select error parsers:

1. Do one of the following:
❍ To set properties for future Standard Make projects, click Window > Preferences .

ExpandC/C++, and click New Make Projects.
❍ In the C/C++ Projects view, right-click a standard make project, and select Properties.

Select C/C++ Make Project from the list.

2. Click the Error Parsers tab.
3. In the Error parsers list, select error parsers.
4. Click OK.

CDT Projects
Project file views

Error Parsers, C/C++ Properties window

Selecting a binary parser
Selecting the correct binary parser is important to ensure the accuracy of the C/C++ Projects view and the ability to successfully run
and debug your programs. Windows users should select the PE Windows Parser. UNIX and Linux users should select the Elf Parser.
When you select the correct parser for your development environment and build your project, you can view the components of the .o
file in the C/C++ Projects view and view the contents of the .o file in the C/C++ editor. You can also easily browse for the executable
when defining run/debug configurations.

You can define the properties on a per project basis from the New Project wizard, in the C/C++ Projects view or in the Navigator
view. You can also define project properties in the Preferences window for future standard make projects.

To select a binary parser:

1. To set properties for future Standard Make projects, click Window > Preferences . Expand C/C++, click New Make Projects.
2. Click the Binary Parser tab.

3. In the Binary Parser list, click:
❍ Elf Parser, if you are a Solaris, UNIX, or Linux user.
❍ PE Windows Parser, if you are a Windows user.
❍ Cygwin PE Parser, if you are using Cygwin.

4. Click OK.

CDT Projects
Project file views

Working with C/C++ project files

Binary Parser, C/C++ Properties window

Adding Include paths and symbols
For Standard Make projects you can define include paths and preprocessor symbols for the parser. This enables the parser to
understand the contents of the C/C++ source code so that you may more effectively use the search and code completion features.

If Autodiscovery is enabled once a build has completed any discovered paths and symbols will be displayed in the Discoverd Paths
section. You can also define the properties on a per project basis in the C/C++ Projects or Navigator views.

To add include paths and symbols:

1. To set properties for your project right click your standard make project and select Properties.
2. Click C/C++ Include Paths and Symbols.

3. Select Add Preprocessor Symbol...

and enter your symbol.

4. Select Add External Include Path...

and enter your path.

5. Select the container and click Edit to change the order in which your new path or symbol is used.

6. Select the new object and click Up or Down to move it higher or lower in the order, or you can disable it by clicking Disable.
7. Click Finish to close the Edit Container window.
8. Click OK to close the Preferences window.

CDT Projects
Project file views

Working with C/C++ project files

Selecting a deployment platform
For managed make projects, you need to select the platform on which you plan to deploy your program.
You also need to select a release or debug configuration for your project.

To select a deployment platform:

1. In the C/C++ Projects view, right-click a project, and select Properties.
2. Select C/C++ Build from the list.
3. To create a configuration with optimization flags enabled and debug symbols disabled, in the

Configurations list, select Release.
4. To create a configuration with optimization flags disabled and debug symbols enabled, in the

Configurations list, select Debug.

CDT Projects
Project file views

Working with C/C++ project files

Target platform, C/C++ Properties window

file:///C|/test/docs/reference/cdt_u_newproj_platf.htm

Setting build order
You can specify the order in which projects are built. Referenced projects are built first.

When you set the build order, the CDT does not rebuild projects that depend on a project. You must rebuild all projects
to ensure changes are propagated.

For more information on build order, see Workbench User Guide > Reference > Preference > Build Order.

To set the project build order:

1. Click Window > Preferences.
2. Select Build Order from the list.

3. Clear the Use default build order checkbox.
4. Select a project in the list.
5. Do one of the following:

❍ Click Up to move the project up the list.
❍ Click Down to move the project down the list.

6. To add projects to the build path, click Add Project.
7. Select the projects to add to the build order list.
8. Click OK.
9. To remove a project from the Project build order list, click Remove Project.

When building or rebuilding all projects, the projects that have been removed from the build order are built last.

10. Click Apply.

Build overview

Defining build settings
Building

Make Builder page, C/C++ Properties window

Building Manually
Manual builds let you choose the scope of a build, as well as options for building, or rebuilding projects.
You can view the output of the make utility in the console.

Incremental Builds
To incrementally build all open projects, you can select Project > Build All or type CTRL+B.

Build Individual Projects
To build individual projects click Project > Build Project.

Rebuild Projects
To rebuild a project right click on the project and select Rebuild Project.
Note: This will rebuild projects that this project references as well, but will not rebuild projects that
references this one.

Build Automatically
This performs a Build All whenever any project file is saved, such as your makefile.
Tip: For C/C++ projects this feature should be turned off, if there is a checkmark beside Build
Automatically it is on, to turn it off select Build Automatically.

Tip: If you get the error message:

Exec error:Launching failed

The error message means that the CDT cannot locate the build command, (usually make). Either your
path is not configured correctly or you do not have make installed on your system.

Tip: The menubar item Project > Build Working Set submenu for C/C++ projects simply creates a link to
the build all target as defined in your makefile, and is no different from an Incremental Build.

Build overview

Defining Build Settings
Building

Make Builder page, C/C++ Properties window

Removing Build Automatically
The Eclipse workbench is configured to build projects automatically. However for C/C++ development you
should turn this feature off, otherwise your entire project will be rebuilt whenever, for example, you save a
change to your makefile or source files. Click Project > Build Automatically and ensure there is no
checkmark beside the Build Automatically menu item.

Build overview

Building Manually
Defining Build Settings
Building

Make Builder page, C/C++ Properties window

Autosaving on a build
You can let the CDT save modified files whenever you perform a manual build. The files are saved before
the build is performed so that the latest version of your files is built. You can view the output of the make
utility in the Console view.

To save resources before manual builds:

1. Click Window > Preferences.
2. Select Workbench from the list.

3. On the Workbench page, select the Save automatically before build check box.
4. Click OK.

The CDT will now save your resources when you build a project.

Build overview

Defining build settings
Building

Make Builder page, C/C++ Properties window

Creating a Make Target
To create a make target:

1. Right click on the project and select Create Make Target...

2. Enter the Target name and build options and click Create.

3. The make target will appear in the Make Targets view.

Build overview

Defining Build Settings
Building

Create a Make Target
Make Target View

Customizing the Console view
The Console view displays the output of the utilities invoked when building a project or the programs
output when running/debugging..

To set Console view preferences

1. Click Window > Preferences.
2. Expand C/C++, and click Build Console.

3. To display information on the latest build only, select the Always clear console before building
check box.

4. To open the Console view when a project is built, select the Open console when building check
box.

5. To display the console if it is already open when a project is built, select the Bring the console to
top when building (if present) check box.

6. To change the number of lines the console stores in its history, enter a new value in the text field

next to Limit console output (# lines).
7. To change the number of spaces displayed by a tab, enter the number in the txt field next to

Display tab width.
8. Click OK.

Build overview

Defining Build Settings
Building

Views

Viewing and managing compile errors
This section describes how to view and manage compile errors. Compile errors are displayed in the
console view.

Jumping to errors
Filtering the Tasks view
Setting reminders

Jumping to errors
The CDT will parse the output from the make and compiler/linker. If the CDT can determine the location of
an error, it is added to the Console view.

To jump to the source of an error:

● In the Console view, double-click the Error icon or the Warning icon .
The file opens in the C/C++ editor and the cursor moves to the line with the error.

To jump to errors sequentially:

● Click Jump to next or Jump to previous.

Build overview

Defining Build Settings
Filtering the Tasks view
Setting reminders

Run and Debug dialog box

Filtering the Problems view
Depending on the complexity and stage of your program, an overwhelming number of errors can be
generated. You can customize Problems view to only view certain types of errors.

To filter errors:

1. In Problems view, click the Filters icon .
2. To view all errors and warnings, select all checkboxes in the Show items of type list, and click On

any resource.
3. Click OK.

Build overview

Defining Build Settings
Jumping to errors
Setting reminders

Run and Debug dialog box

Setting reminders
The Tasks view lets you create your own tasks. In addition to having the Tasks view automatically list build
errors, you can set personal reminders for tasks, such as unfinished functions that you write or error
handling routines that you want to verify.

To set a reminder:

1. In Tasks view, right-click the Tasks pane, and select New Task.
2. In the Description box, type a new task.
3. Click OK.

For more information on the Tasks view, see:

● Workbench User Guide > Concepts> Views > Tasks view
● Workbench User Guide > Reference > User interface information > Views and editors >

Tasks view

Build overview

Defining Build Settings
Jumping to errors
Filtering the Tasks view

Run and Debug dialog box

Running and debugging projects
This section explains how to run a C or C++ application using an existing run configuration and how to
create a new run configuration.

Creating or editing a run/debug configuration
Selecting a run or debug configuration
Creating a run or debug configuration
Selecting an application to run or debug
Specifying execution arguments
Setting environment variables
Defining debug settings
Specifying the location of source files
Specifying the location of the run configuration

Debugging
Debugging a program
Working with breakpoints and watchpoints

Adding breakpoints
Adding watchpoints
Removing breakpoints and watchpoints
Enabling and disabling breakpoints and watchpoints

Controlling debug execution
Stepping into assembler functions
Working with variables
Adding expressions
Working with registers
Working with memory

Creating or editing a run/debug configuration
You can run an application by right-clicking the file and clicking Open With > System Editor or you can
create a run configure a run environment with which to run your application.

This section explains how to create a run or debug configuration.

The Run and Debug dialog boxes each contain the following tabs:

● Main
● Arguments
● Environment
● Debugger
● Source
● Common

Selecting a run or debug configuration
Creating a run or debug configuration
Selecting an application to run or debug
Specifying execution arguments
Setting environment variables
Defining debug settings
Specifying the location of source files
Specifying the location of the run configuration

Selecting a run or debug configuration
You can select an existing run configuration to use to run your program.

To select a run configuration:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.

5. Select a configuration from the Configurations list.
6. Click Run or Debug.

CDT Projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Creating a run or debug configuration
You can create customized run configuration which you can save for reuse.

To create a run configuration:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Click New. The name of the new project is displayed in the Configurations box. The default name is the name of the

project.

5. To change the default name of the new run/debug configuration, see Selecting an application to run or debug.

CDT Projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Selecting an application to run or debug
You need to specify the project or program that you want to run or debug for this run configuration.

To select an application to run:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.
5. Click the Main tab.

6. Do the following:

❍ In the Name box, type a descriptive name for this new a descriptive name for this launch configuration.
❍ In the Project box, type the name of the project containing the application that you want to run.
❍ In the C/C++ Application box, type the name of the executable that you want to run.

7. Click Run or do the following, as required:
❍ To specify the execution arguments that an application uses, and to specify the working directory for a run

configuration, see Specifying execution arguments.
❍ To set the environment variables and values to use when an application runs, see Setting environment

variables
❍ To select a debugger to use when debugging an application, see Selecting a debugger
❍ To specify the location of source files used when debugging a C or C++ application, see Specifying the

location of source files
❍ To specify where the run configuration is stored, how you access it and the perspective to open when running

an application, see Specifying the location of the run configuration

CDT projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Specifying execution arguments
You can specify the execution arguments that an application uses and the working directory for a run configuration.

To specify execution arguments:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.
5. Click the Arguments tab.

6. In the C/C++ Program Arguments box, type the arguments that you want to pass to the command line.
7. To specify a local directory or a different project in your workspace, clear the Use default working directory check

box.
8. Click Run or do the following, as required:

❍ To set the environment variables and values to use when an application runs, see Setting environment variables
❍ To select a debugger to use when debugging an application, see Creating a run configuration
❍ To specify the location of source files used when debugging a C or C++ application, see Specifying the location

of source files
❍ To specify where the run configuration is stored, how you access it and the perspective to open when running

an application, see Specifying the location of the run configuration

CDT projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Setting environment variables
You can set the environment variables and values to use when an application runs.

To set environment variables:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.
5. Click the Environment tab..

6. Do one of the following:

❍ To create a new environment variable, click New.
❍ To import an environment variable, click Import.
❍ To edit an existing environment variable, select an item from the list and click Edit.
❍ To remove an existing environment variable, select an item from the list and click Remove.

7. Type a name in the Name box.
8. Type a value in the Value box.
9. Click Run or do the following, as required:

❍ To specify the execution arguments that an application uses and to specify the working directory for a run
configuration, see Specifying execution arguments.

❍ To select a debugger to use when debugging an application, see Selecting a debugger
❍ To specify the location of source files used when debugging a C or C++ application, see Specifying the location

of source files
❍ To specify where the run configuration is stored, how you access it, and the perspective to open when running

an application, see Specifying the location of the run configuration

CDT Projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Defining debug settings
Select a debugger to use when debugging an application.

To select a debugger:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.
5. Click the Debugger tab..

6. Select a debugger from the Debugger list.
7. To be prompted to select a process from a list at run-time, select Attach to running process.
8. To let your program run until you interrupt it manually, or until it hits a breakpoint, clear the Stop at main() on startup check box .
9. Specify debug options in the Debugger Options box.

10. Click Run or do the following, as required:
❍ To specify the execution arguments that an application uses and the working directory for a run configuration, see

Specifying execution arguments.
❍ To set the environment variables and the values to use when an application runs, see Setting environment variables
❍ To specify the location of source files used when debugging a C or C++ application, see Specifying the location of source

files
❍ To specify where the run configuration is stored, how you access it, and the perspective to open when running an

application, see Specifying the location of the run configuration

CDT Projects
Project file views
Debug overview
Debug information

Creating or editing a run configuration

Run and Debug dialog box

Specifying the location of source files
You can specify the location of source files used when debugging a C or C++ application. By default, this
information is taken from the build path of your project.

To specify the location of source files:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Select a run or debug configuration.
5. Click the Source tab.

The Generic Source Locations list shows the location of the project selected in the C/C++ Projects
view and any referenced projects.

6. To add an existing source locations:
❍ Click Add to be prompted to select a process from a list at run-time.
❍ In the Add Source Location dialog box, select a location type.
❍ Click Next.
❍ Do one of the following:

■ Select an existing project in your workspace. Click Finish.
■ Specify a location in your file system. Click Finish.

7. You can change the order of source locations are used by selecting a location and clicking the Up
or Down buttons.

8. You can remove a source location by selecting the location and clicking the Remove button.
9. To search for duplications in your source locations select the Search for duplicate source files

checkbox.
10. Click Run or do the following, as required:

❍ To specify the execution arguments that an application uses and the working directory for a
run configuration, see Specifying execution arguments.

❍ To set the environment variables and values to use when an application runs, see Setting
environment variables.

❍ To select a debugger to use when debugging an application, see Selecting a debugger.
❍ To specify where the run configuration is stored, how you access it, and the perspective to

open when running an application, see Specifying the location of the run configuration.

CDT Projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Specifying the location of the run configuration
When you create a run configuration, it is saved with the extension .launch in org.eclipse.debug.core. You can
specify an alternate location in which to store your run configuration. You can also specify how you access it and what
perspective to open when running an application.

To specify the location of a run configuration:

1. In the C/C++ Projects view, select a project.
2. Click Run > Run or Run > Debug.
3. In the Configurations box, expand C/C++ Local.
4. Click the Common tab.

5. To save .launch to a project in your workspace, and to be able to commit it to CVS, click Shared.
6. In the Folder Selection window, select a project, and click OK.

7. To specify which perspective opens when you run, select a perspective from the Run mode list.
8. To specify which perspective opens when you run, select a perspective from the Debug mode list.
9. Click Run, or do the following, as required:

❍ To set the environment variables and values to use when an application runs, see Setting environment
variables.

❍ To select a debugger to use when debugging an application, see Defining debug settings.
❍ To specify the location of source files used when debugging a C or C++ application, see Specifying the location

of source files.
❍ To specify where the run configuration is stored, how you access it, and the perspective to open when running

an application, see Selecting a run/debug configuration.

CDT Projects
Project file views

Creating or editing a run configuration

Run and Debug dialog box

Debugging
This section explains how to debug your project.

Debugging a program
Working with breakpoints and watchpoints

Adding breakpoints
Adding watchpoints
Removing breakpoints and watchpoints
Enabling and disabling breakpoints and watchpoints

Controlling debug execution
Stepping into assembler functions
Working with variables
Adding expressions
Working with registers
Working with memory

Debugging a program
You must create a debug launch configuration the first time you debug your program.

To create a debug configuration:

1. In C/C++ Projects view, select a project.
2. Click Run > Debug.
3. In the Debug dialog box, select a debug configuration type from the Configurations list.
4. Click New.
5. In the Name box, type a descriptive name for this debug configuration.
6. In the Project box, type the name of the project containing the application you want to debug.
7. In the C/C++ Application box, type the name of the executable that you want to run.
8. Click the Debugger tab.
9. Select Run program in debugger.

10. Select the Stop at main() on startup checkbox.
11. Click Debug.

The debug perspective is opened and the application window opens on top. The C/C++ editor
window is repositioned in the perspective.

For more information:

● To specify the execution arguments an application uses and the working directory for a run
configuration, see Specifying execution arguments.

● To set the environment variables and values to use when an application runs, see Setting
environment variables

● To select a debugger to use when debugging an application, see Selecting a debugger
● To specify the location of source files used when debugging a C or C++ application, see Specifying

the location of source files
● To specify where the run configuration is stored, how you access it and what perspective to open

when running an application, see Specifying the location of the run configuration

To use a debug configuration:

You can reuse a previously created debug launch configuration to debug your program.

1. Click Run > Debug.
2. In the Debug dialog box, select a debug configuration from the Configurations list.
3. Click Debug.

Debug overview

Debug information

Debugging

Run and Debug dialog box

Working with breakpoints and watchpoints
This section explains how to work with breakpoints and watchpoints.

Adding breakpoints
Adding watchpoints
Removing breakpoints and watchpoints
Enabling and disabling breakpoints and watchpoints

Adding breakpoints
A breakpoint is set on an executable line of a program. If the breakpoint is enabled when you debug, the
execution suspends before that line of code executes.

To add a breakpoint point, double click the marker bar located in the left margin of the C/C++ Editor
beside the line of code where you want to add a breakpoint. A dot is displayed in the marker bar and in
the Breakpoints view, along with the name of the associated file.

For more information on marker bar icons, see Workbench User Guide > Reference > User interface
information > Icons and buttons > Editor area marker bar.

C/C++ Development perspective

Working with breakpoints and watchpoints

Run and Debug dialog box

Adding watchpoints
A watchpoint is a special breakpoint that stops the execution of an application whenever the value of a
given expression changes, without specifying where this may happen. Unlike breakpoints which are line-
specific watchpoints are associated with files. They take effect whenever a specified condition is true
regardless of when or where it occurred.

To add a watchpoint:

1. Click Run > Add C/C++ Watchpoint.
1. If Add C/C++ Watchpoint is not listed on the Run menu, select Window > Customize

Perspective.
2. In the Customize Perspective dialog box, expand Other in the Available Items list.
3. Select the C/C++ Debug check box. Click OK.

2. In the Add C/C++ Watchpoint dialog box, type an expression in the Expression to watch box.
The expression may be anything that can be evaluated inside an if statement.

3. Do any of the following:
❍ To stop execution when the watch expression is read, select the Read check box.
❍ To stop execution when the watch expression is written to, select the Write check box.

4. In the C/C++ editor, open the file that you added the watchpoint to.
5. Click OK.
6. The watchpoint appears in the Breakpoints view list.

C/C++ Development perspective

Working with breakpoints and watchpoints

Run and Debug dialog box

Removing breakpoints and watchpoints
When you remove a breakpoint or watchpoint, the corresponding icon is removed from the marker bar
where it was inserted and the Breakpoints view.

To remove breakpoints or watchpoints:

1. In the Breakpoints view, do one of the following:
❍ Select the breakpoints and watchpoints you want to remove.
❍ Click Edit > Select All.
❍ Right-click, click Select All.

2. In the Breakpoints view, right-click and select Remove or Remove All.

For more information on marker bar icons, see Workbench User Guide > Reference > User interface
information > Icons and buttons > Editor area marker bar.

C/C++ Development perspective

Working with breakpoints and watchpoints

Run and Debug dialog box

Enabling and disabling breakpoints and watchpoints
You can temporarily disable a breakpoint or watchpoint without losing the information it contains.

To enable or disable breakpoints or watchpoints:

1. In the Breakpoints view, do one of the following:
❍ Select the breakpoints and watchpoints that you want to remove.
❍ Click Edit > Select All.
❍ Right-click, and select Select All.

2. In the Breakpoints view, right-click the highlighted breakpoints and watchpoints and click Disable
or Enable.

C/C++ Development perspective

Working with breakpoints and watchpoints

Run and Debug dialog box

Controlling debug execution
The debug execution controls are superceded by breakpoints. For example, if you attempt to step over a
function and the program hits a breakpoint, it pauses, regardless of whether the function is completed.
You can control your debug execution in various ways, but they all rely on a core set of debug controls.

To control a debug execution:

1. In the Debug view, select a thread.
2. To complete the debug session, click:

❍ Run > Resume
❍ Run > Suspend
❍ Run > Terminate
❍ Run > Disconnect
❍ Run > Remove All Terminated Launches
❍ Run > Restart

C/C++ Development perspective

Debugging

Debug launch controls
Debug view

Stepping into assembler functions
Disassembly mode lets you can examine your program as it steps into functions that you do not have
source code for [such as printf()]. When the instruction pointer enters a function for which it does not have
the source, the function is displayed in the Assembly editor.

When disassembly mode is disabled, the debugger steps over functions for which you do not have the
source.

To step into assembler functions during debugging:

● In the Debug view, right-click, and select Disassembly Mode.

As you step Into assembler functions, the execution trace is displayed in the Assembly Editor.

C/C++ Development perspective

Debugging

Debug views

Working with variables
During a debug session, you can display variable types, and change or disable variable values.

To display variable type names:

● In Variables view, click the Show Type Names toggle button.

To change a variable value while debugging:

During a debug, you can change the value of a variable to test how your program handles a particular
value or to speed through a loop.

1. In Variables view, right-click a variable, and select Change Variable Value.
2. Type a value.

To disable a variable value while debugging:

You can disable a variable so that the debugger does not read the variable's value from the target. This is
useful if the target is very sensitive or the variable is specified as volatile.

● In Variables view, right-click a variable, and select Disable.

C/C++ Development perspective

Debugging

Debug views

Adding expressions
You can add and view expressions in the Expressions view. The Expressions view is part of the Debug
perspective.

To add an expression:

1. Click Run > Add Expression.
2. Type the expression that you want to evaluate. For example, (x-5)*3).
3. Click OK.

The expression and its value appear in the Expressions view. When the execution of a program is
suspended, all expressions are reevaluated and changed values are highlighted.

C/C++ Development perspective

Debugging

Debug views

Working with registers
You can modify registers in the Registers view.

To modify Registers:

1. In the Registers view, right-click a register and click Change Register Value.
2. Type a new value.
3. Press Enter.

The Register value is highlighted in red whether or not it was changed.

To change the number system displayed:

You can change the number system used to display register values.

1. In the Registers view, right-click a register, and select Format.
2. Type a new value.
3. Do one of the following:

❍ Click Natural.
❍ Click Decimal.
❍ Click Hexadecimal.

To modify Registers view preferences:

1. Click Window > Preferences.
2. Expand Debug, and click Registers View.
3. Make the required changes, and click OK.

C/C++ Development perspective

Debugging

Debug views

Working with memory
You can inspect and change process memory.

The Memory view supports the same addressing as the C language. You can address memory using
expressions such as:

● 0x0847d3c
● (&y)+1024
● *ptr

You can configure your output to display hexadecimal or decimal. You can also set the number of display
columns and the memory unit size. You can configure each memory tab independently.

You can customize the Memory view to colors and fonts displayed. You can also customize some of its
behavior. The customizations affect the entire Memory view.

To change process memory:

Warning: Changing process memory can cause a program to crash.

1. In the Debug view, select a process. Selecting a thread automatically selects the associated
process.

2. In the Memory view, click a memory tab.
3. Do one of the following:

❍ In the Address box, type an address and press Enter.
❍ In the memory view, type a new value for memory. The Memory view works in "typeover"

mode. To jump from byte to byte use the arrow keys:

To change the appearance of the Memory view:

1. Do one of the following:
❍ In the Memory view, click one of the tabs.
❍ Click Window > Preferences.

2. In list of memory addresses, right-click, and select:
❍ Format > Hexadecimal, Signed Decimal or Unsigned Decimal.
❍ Memory Unit Size > 1, 2, 4, or 8 bytes
❍ Number of Columns > 1, 2, 4, 8, or 16 columns.

C/C++ Development perspective

Debugging

Debug views

Searching for C/C++ elements
It is recommended that you perform searches on successfully compiled programs to ensure the accuracy
of search results. It is important to familiarize yourself with the correct search syntax to use to complete an
effective search. It is also important to ensure that include paths and symbols are correctly defined. For
more information, see Including paths and symbols.

See C/C++ search, for more information on:

● What you can search for
● How to limit your search
● How to use wildcard characters in your search
● Syntax examples

Performing a C/C++ Search can be done in a number of different ways but regardless of the manner
chosen the same information must be provided to C/C++ Search.

The info required to do a search is:
Search string this is the name of the element you are looking for. See C/C++ search for more

information on how to specify wildcard searches and how to further refine your searches
by using fully qualified names

Search For this is the element type that you wish to search for. You can also select to search on
‘Any Element’ which will perform the search on a combination of all elements

Limit To this allows you to limit your search to declarations, definitions or references. You can
also select ‘All Occurrences’ which will search for declarations, definitions and
references that match the element

Scope this allows the user to limit the scope of the search. The three available scopes are:
Workspace this searches all of the open projects in the workspace
Selected Resources this option becomes enabled whenever something is selected in

one of the following views in the C/C++ perspective:
● C/C++ Projects
● Navigator
● Search
● Outline

The scope will be limited to whatever element is selected in the
view.

Working Set working sets can be selected and created

There are 3 main ways for initiating a C/C++ search:

● Using the C/C++ Search dialog
● Selecting an element in the Editor view
● Selecting an element in the C/C++ Projects view or Selecting an element from the Outline view

Using the C/C++ Search dialog

1. Enter the search string in the Search String field (optional mark it case sensitive).
Note: that previous search queries (from the same work session) are remembered and can be
accessed via the drop down list.

2. Select the Search For element.
3. Select the Limit To.
4. Select the Scope.
5. Press Search.

Results are displayed in the Search view.

Selecting an element in the Editor view

1. Select the desired element in the editor.
2. Right click and select All Declarations or All References and the scope you wish to search.

Results are displayed in the Search view.

Selecting an element in C/C++ Projects or Outline View
1. Select the desired element in the tree.
2. Right click and select All Declarations or All References and the scope you wish to search.

Results are displayed in the Search view.

For more information, see:

● Workbench User Guide > Concepts > Views > Search view
● Workbench User Guide > Concepts > Workbench > Working Set
● Workbench User Guide > Tasks > Navigating and finding resources

C/C++ search
C/C++ Indexer
CDT Projects
Open Declarations

Selection Searching for C/C++ elements
Navigate to C/C++ declarations

C/C++ search page, Search dialog box

Selection Searching for C/C++ elements
It is recommended that you perform searches on successfully compiled programs to ensure the accuracy of
search results. It is important to familiarize yourself with the correct search syntax to use to complete an effective
search. It is also important to ensure that include paths and symbols are correctly defined. For more information,
see Including paths and symbols.

See C/C++ search, for more information on:

● What you can search for
● How to limit your search
● How to use wildcard characters in your search
● Syntax examples

To search for an element in your project:

1. Highlight the element you want to search.
2. Right click and select Search For from the context menu.

3. Select All Declarations or All References.
4. Select Workspace or Working Set....

5. The search results will appear in the Search View

For more information, see:

● Workbench User Guide > Concepts > Views > Search view
● Workbench User Guide > Tasks > Navigating and finding resources

C/C++ search
CDT Projects
Open Declarations

Searching for C/C++ elements
Navigate to C/C++ declarations

C/C++ search page, Search dialog box

Enable/Disable the C/C++ Indexer
The C/C++ indexer is on by default. You can enable/disable indexing on any project from the C/C++
perspective.

The indexer can be enabled or disabled at any time by:

1. Right clicking on the project
2. Selecting Properties
3. Navigate to the C/C++ Indexer page
4. Select/Deselect the Enable C/C++ Indexing checkbox.

If you enable the index on a project that had the index disabled, the indexer will reindex all of the project’s
source folders.

If you disable the index on a project, it will no longer react to any resource change events. If the indexer is
indexing at the time you disable the index, it will throw away the rest of the index jobs at that point.

If some projects in your workspace have the indexer disabled, then search will display a warning message
in the status bar. If all projects have the index disabled then Search will not allow you to continue until at
least one project has the index enabled.

You can also disable the indexer when you first create a new project by clicking on the C/C++ Indexer tab
(which is present in both Standard and Managed project wizards) and deselecting the Enable C/C++
Indexing checkbox.

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

C/C++ Indexer Problem Reporting
C/C++ Index Problem reporting places a problem marker on the editor and adds an item to the error list for
each preprocessor or semantic problem reported by the parser. Note that the markers will only show up
the next time the file is indexed.

To enable C/C++ Index Problem reporting:

1. Right click on the project and select Properties > C/C++ Indexer
2. Select the Enable C/C++ Index problem reporting checkbox
3. Click OK

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

C/C++ Indexer – Indexer Timeout
If the indexer gets stuck on a particular file while indexing there is a timeout watchdog, which will terminate
the indexing attempt after a certain period.

This can be set as follows:

1. Click Windows > Preferences > C/C++ > Search
2. Enter the timeout value in milliseconds into the text field.
3. Click OK

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
Setting Source Folders

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

Setting Source Folders
Note that source folders can only be currently used with Standard Make projects. Managed Make projects treat the
entire project as a source folder.

Source folders are a way to cut down on a project’s indexing scope. You can mark the folders that are part of your
day to day work or part of a subsystem that you work on. All files inside source folders will be indexed and are,
thus, searchable. Note that any files pulled in by a file inside a source folder will also be indexed.

To setup source folders:

1. Right click on the project and select Properties > C/C++ Project Paths
2. Click on the Source tab

By default the entire project is a source folder, which means everything will be indexed. This is reasonable
for smaller projects but definitely not recommended for large projects.

3. Click Add folder to add the folders. A dialog will explain exclusion filters have been added to nesting
folders. You will see that the folder you added will be excluded from the project folder (in order to avoid
including a folder twice). Repeat until all the folders have been added.
Note: Don't forget to remove the project folder (which appears by default) otherwise everything will be
indexed.

4. Click OK. Your view in C/C++ projects will now change. You should see your source folders designated
with a "C" and all other source and header files icons that are in a non-source folder will change to a
"hollow" C or H.

C/C++ search
C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Selection Searching for C/C++ elements
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout

Search, C/C++ Preferences window
C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, Indexer
C/C++ Project Properties, Standard, Indexer

Reference
This section describes the Views, Windows and Dialog Boxes available from the C/C++ perspective.

C/C++ Views and Editors
Selecting Views and Editors
C/C++ Projects view
Navigator view
Outline view
Make Targets view
Editor view
Console view
Problems view
Properties view
Search view
Debug views

Registers view
Memory view
Memory view preferences
Shared libraries view
Signals view
Debug view
Debug preferences

C/C++ Icons
C/C++ Menubar

File Menu actions
Edit Menu actions
Navigate Menu actions
Search Menu actions
Project Menu actions
Run Menu actions
Window Menu actions

C/C++ Toolbar
C/C++ Open Type
Create a Make Target
C/C++ Find/Replace
C/C++ preferences

Build Console preferences
Code Templates preferences
Debug preferences

GDB MI preferences
Source Code Locations preferences

C/C++ Editor preferences
General preferences
Color preferences
Content Assist preferences
Hover preferences
Navigation preferences

File Types preferences
Make Targets preferences
New Make Projects properties preferences

Make Builder preferences
Error Parser preferences
Binary Parser preferences
Discovery Options preferences

Search preferences
C/C++ Project Properties

Managed Make Projects
Info
Builders
Build
File Types
Indexer
Error Parser
Binary Parser
Project References

Standard Make Projects
Info
Builders
File Types
Include Paths and Symbols
Indexer
Make Project

Make Builder
Error Parser
Binary Parser
Discovery Options

Project Paths
Source
Output
Projects
Libraries
Path Containers

Project References
C/C++ New Project Wizard

Managed Make Projects
Name
Select a Target
Referenced Projects
Error Parsers
C/C++ Indexer

Standard Make Projects
Name
Referenced Projects
Make Builder
Error Parsers
Binary Parser
Discovery Options
C/C++ Indexer

C/C++ Run and Debug
Main
Arguments
Environment
Debugger
Source
Common

C/C++ search

file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

C/C++ Views and Editors
This section describes views and editors of the C/C++ perspective.

Selecting Views and Editors
C/C++ Projects view
Navigator view
Outline view
Make Targets view
Editor view
Console view
Problems view
Properties view
Search view
Debug views

Registers view
Memory view
Memory view preferences
Shared libraries view
Signals view
Debug view
Debug preferences

C/C++ Icons

Selecting Views and Editors
To see a list of all views, from the menu bar choose Window > Show View > Others.

The following views comprise the C/C++ Projects View:

Basic views
Console

Displays the application's output.
Navigator

Displays the file system under the launchdir/workspace directory.
Outline

Displays the functions and header files in your source files. Open a source file in an editor to view
its outline.

Problems
Displays problems.

Properties

Displays the name, path, size, permissions, and last modified date of the resource highlighted in
the Navigator view.

Search
Displays the results of file or text searches.

C views
C/C++ Projects

Displays your current projects. This is similar to the Navigator view, except that:
❍ Only projects and their contents are displayed
❍ You are able to view the "building blocks" of the files, such as the include files and the

functions.

Make views
Make Targets

Lists your projects. To build a project, double-click on it..

Editor view
The Editor view is not listed under Window > Show View or Window > Show View > Others, it is
opened whenever an editable file is opened from the C/C++ Projects or Navigator views.

C/C++ Projects view
The C/C++ Projects view displays, in a tree structure, only elements relevant to C and C++ project files. In
this view you can do the following:

● Browse the elements of C/C++ source files
● Open files in the editor view
● Open projects in a new window
● Create new projects, classes, files, or folders
● Manage existing files (cut, paste, delete, move or rename)
● Restore deleted files from local history
● Import or Export files and projects

Files that you select in the C/C++ Projects view affect the information that is displayed in other views.

Toolbar

Icon Name Description

MinimizeConsole Minimizes the Console view.

Maximize Console Maximizes the Console view.

Back This command displays the hierarchy that was displayed immediately prior to
the current display. For example, if you Go Into a resource, then the Back
command in the resulting display returns the view to the same hierarchy from
which you activated the Go Into command. The hover help for this button tells
you where it will take you. This command is similar to the Back button in a
web browser.

Forward This command displays the hierarchy that was displayed immediately after
the current display. For example, if you've just selected the Back command,
then selecting the Forward command in the resulting display returns the view
to the same hierarchy from which you activated the Back command. The
hover help for this button tells you where it will take you. This command is
similar to the Forward button in a web browser.

Up This command displays the hierarchy of the parent of the current highest
level resource. The hover help for this button tells you where it will take you.

Collapse All This command collapses the tree expansion state of all resources in the view.

Link with Editor This command toggles whether the Navigator view selection is linked to the
active editor. When this option is selected, changing the active editor will
automatically update the Navigator selection to the resource being edited.

Menu Click the black upside-down triangle icon to open a menu of items specific to
the Navigator view.

Select Working Set
Opens the Select Working Set dialog to allow selecting a working set
for the Navigator view.

Deselect Working Set
Deselects the current working set.

Edit Active Working Set
Opens the Edit Working Set dialog to allow changing the current
working set.

Sort
This command sorts the resources in the Navigator view according to
the selected schema:

❍ By Name: Resources are sorted alphabetically, according to
the full name of the resource (e.g., A.TXT, then B.DOC, then C.
HTML, etc.)

❍ By Type: Resources are sorted alphabetically by file type/
extension (e.g., all DOC files, then all HTML files, then all TXT
files, etc.).

Filters
This command allows you to select filters to apply to the view so that

you can show or hide various resources as needed. File types
selected in the list will not be shown in the Navigator.

Link with Editor
See the toolbar item description above.

C/C++ Projects view icons

The table below lists the icons displayed in the C/C++ Projects view.

Icon Description

C or C++ file

Class

Code template

Macro Definition

Enum

Enumerator

Variable

Field private

Field protected

Field public

Include

Makefile

Method private

Method protected

Method public

Namespace

Struct

Type definition

Union

Function

Project file views

Displaying C/C++ file components in the C/C++ Projects view
Hiding files by type in the C/C++ Projects view

file:///C|/test/docs/Tasks/cdt_t_show_proj_files.htm
file:///C|/test/docs/Tasks/cdt_t_prvw_hide_files.htm

Navigator view
This view provides a hierarchical view of the resources in the Workbench.

Toolbar

Icon Name Description

MinimizeConsole Minimizes the Console view.

Maximize Console Maximizes the Console view.

Back This command displays the hierarchy that was displayed immediately prior to
the current display. For example, if you Go Into a resource, then the Back
command in the resulting display returns the view to the same hierarchy from
which you activated the Go Into command. The hover help for this button tells
you where it will take you. This command is similar to the Back button in a
web browser.

Forward This command displays the hierarchy that was displayed immediately after
the current display. For example, if you've just selected the Back command,
then selecting the Forward command in the resulting display returns the view
to the same hierarchy from which you activated the Back command. The
hover help for this button tells you where it will take you. This command is
similar to the Forward button in a web browser.

Up This command displays the hierarchy of the parent of the current highest
level resource. The hover help for this button tells you where it will take you.

Collapse All This command collapses the tree expansion state of all resources in the view.

Link with Editor This command toggles whether the Navigator view selection is linked to the
active editor. When this option is selected, changing the active editor will
automatically update the Navigator selection to the resource being edited.

Menu Click the black upside-down triangle icon to open a menu of items specific to
the Navigator view.

Select Working Set
Opens the Select Working Set dialog to allow selecting a working set
for the Navigator view.

Deselect Working Set
Deselects the current working set.

Edit Active Working Set
Opens the Edit Working Set dialog to allow changing the current
working set.

Sort
This command sorts the resources in the Navigator view according to
the selected schema:

❍ By Name: Resources are sorted alphabetically, according to
the full name of the resource (e.g., A.TXT, then B.DOC, then C.
HTML, etc.)

❍ By Type: Resources are sorted alphabetically by file type/
extension (e.g., all DOC files, then all HTML files, then all TXT
files, etc.).

Filters
This command allows you to select filters to apply to the view so that
you can show or hide various resources as needed. File types
selected in the list will not be shown in the Navigator.

Link with Editor
See the toolbar item description above.

In addition to these menu items, the Navigator view menu shows a list of recently used working sets that
have been selected in the view.

Outline view
The Outline view displays an outline of a structured C/C++ file that is currently open in the editor area, by listing the structural elements.

Outline view toolbar icons

The table below lists the icons displayed in the Outline view toolbar.

Icon Description

Hide Fields

Hide Static Members

Hide Non-Public Members

Sort items alphabetically

Outline view icons

The table below lists the icons displayed in the Outline view.

Icon Description

Class

Namespace

Macro Definition

Enum

Enumerator

Variable

Field private

Field protected

Field public

Include

Method private

Method protected

Method public

Struct

Type definition

Union

Function

Outline view

Displaying C/C++ file components in the C/C++ Projects view

Views

Make Targets view
Enables you to select the make targets you want to build in your workspace.

Icon Command Description

Home Move to the top level.

Back Navigates back to a previous level.

Forward Navigates forward to the next level.

Build Target Builds currently selected target.

Editor view
The C/C++ editor provides specialized features for editing C/C++ related files.

Associated with the editor is a C/C++-specific Outline view, which shows the structure of the active C, C++
or makefile. It is updated as you edit these files.

The editor includes the following features:

● Syntax highlighting
● Content/code assist
● Integrated debugging features

The most common way to invoke the C/C++ editor is to open a file from the Navigator or the C/C++
Project views using pop-up menus or by clicking the file (single or double-click depending on the user
preferences).

The C/C++ editor does not contain a toolbar itself, but relies on the use of the main toolbar, edit menu,
search menu and key binding actions.

Console view
This view shows the output of the execution of your program and enables you to enter input for the
program.

The console shows three different kinds of text, each in a different color:

● Standard output
● Standard error
● Standard input

You can choose the different colors for these kinds of text on the preferences pages (Window >
Preferences > Debug > Console).

Console View Context Menu

When you right-click in the Console view (or when you press Shift+F10 when the focus is on the Console
view), you see the following options:

Edit options: Cut, Copy, Paste, Select All
These options perform the standard edit operations. Which options are available depends on where
the focus is in the Console view. For example, you cannot paste text into the program output, but
you can paste text to the bottom of the file.

Find/Replace
Opens a Find/Replace dialog that operates only on the text in the Console view.

Go to Line
Opens a dialog that moves the focus to the line you specify. The dialog also indicates the total
number of lines in the console buffer.

Terminate
Terminates the process that is currently associated with the console.

Console View Toolbar
Icon Command Description

Terminate Terminates the process that is currently associated with the
console.

Remove all Terminated Launches Removes all terminated launches that are associated with the
console.

Scroll Lock Toggles the Scroll Lock.

Clear Console Clears the console.

Pin Console Forces the Console view to remain on top of other views in the
window area.

Display Selected Console If multiple consoles are open, you can select the one to display
from a list.

MinimizeConsole Minimizes the Console view.

Maximize Console Maximizes the Console view.

Problems view
If you encounter any errors during a build they will be displayed in the Problems view.

Errors are passed up from your C++ compiler. The Problems view lists the error, filename and folder. If you select an error the associated file
will open in the C/C++ Editor view and the cursor will display the line where the error was encountered.

Problems view Toolbar
Icon Command Description

Delete Deletes the selected error from the Problems view.

Filters... Lauches the Filter dialog box to filter the errors in the problems view.

Menu Select the Sort or Filters help navigate through errors in the Problems view.

Minimize Minimizes the Problems view.

Maximize Maximizes the Problems view.

Properties view
The properties view displays property names and values for a selected item such as a resource.

Toolbar buttons allow you to toggle to display properties by category or to filter advanced properties.
Another toolbar button allows you to restore the selected property to its default value.

To see more detailed information about a resource than the Properties view gives you, right-click the
resource name in the Navigator view and select Properties from the pop-up menu.

Toolbar

Icon Name Description

Show Categories This command, when selected, lists the properties in sorted
categories.

Show Advanced Properties This command, when selected, shows advanced properties. By
default, advanced properties are filtered.

Restore Default This command returns any modified properties to their default
values.

Menu Click the black upside-down triangle icon to open a menu of items
specific to the Properties view.

Show Categories
See the toolbar item description above.

Show Advanced Properties
See the toolbar item description above.

MinimizeConsole Minimizes the Console view.

Maximize Console Maximizes the Console view.

Search view
Any matches are reported in the Search view.

When you have completed a search and have results in the Search view, you can put the focus on that
view and get more options on the Search menu.

A C/C++ search can also be conducted via the context menu of selected resources and elements in the
following views:

● C/C++ Projects
● Make Targets
● Navigator
● Outline view
● Search result view

The search context menu is also available in the C/C++ editor. The search is only performed if the
currently selected text can be resolved to a C/C++ element.

The type of the selected C/C++ element defines which search context menus are available. The C/C++
editor does not constrain the list of available C/C++ searches based on the selection.

Search view Toolbar
Icon Command Description

Next Navigates to the next search result.

Previous Navigates to the previous search result.

Remove the Selected Matches Removes user selected matches from the search console.

Remove All Matches Clears the search console.

Terminate Terminates the current search.

Show Previous Searches Shows the list of previously run searches which can be reselected.

Menu Lists two selectable view layouts for search results: Flat and
Heirarchical.

Minimize Console Minimizes the Console view.

Maximize Console Maximizes the Console view.

Coding aids
C/C++ search

Searching for C/C++ elements
Customizing the C/C++ editor

C/C++ editor preferences
Search action
Search dialog

Debug views
This section describes debug views.

Registers view
Memory view
Memory view preferences
Shared libraries view
Signals view
Debug view
Debug preferences

Registers view
The Registers view of the Debug perspective lists information about the registers in a selected stack
frame. Values that have changed are highlighted in the Registers view when your program stops. The
options described below are available when you right-click a register value.

Change Register Value
Specifies a register value.

Format
Displays register values, in Natural, Decimal, or Hexadecimal number systems.

Show Type Names
Displays the type, (such as int) beside each register value.

Auto-Refresh
Updates the registers list each time execution stops.

Refresh
Updates the registers list.

Display as Array
Displays a selected register as an array of a specified length and index. This option is only
applicable to pointers.

Cast To Type
Casts a register value to a different type.

Restore to Original Type
Restores a register value to its original type.

Debug information

Working with registers

Views

Memory view
The Memory view of the Debug perspective lets you inspect and change your process memory. The view
consists of four tabs that let you inspect multiple sections of memory. The options described below are
available when you right-click a memory value.

Auto-Refresh
Updates the memory address list each time execution stops.

Refresh
Updates the memory address list.

Clear
Clears the selected memory address.

Format
Specifies the number system in which to display memory values (Hexadecimal, Signed Decimal, or
Unsigned Decimal).

Memory Unit Size
Specifies the memory address size (1 byte, 2 bytes, 4 bytes, 8 bytes).

Number of Columns
Specifies the numbers of columns displayed in the Registers view (1 column, 2 columns, 4
columns, 8 columns, 16 columns).

Show ASCII
Displays the selected value as ASCII.

Detail panel
Displays the raw output from GDB for the selected variable.

Debug information

Working with memory

Views

Memory view preferences
You can change the appearance of the memory view.

Text Color
Changes the color of the text.

Background Color
Changes the background color.

Address Color
Changes the color of the memory address text.

Changed Value color
Changes the color of values.

Font
Changes the font.

Padding Character
Specifies the character to use for padded values.

Auto-refresh by default
Updates the view automatically.

Show ASCII by default
Displays values in ASCII.

Debug information

Working with memory

Views

Shared Libraries view
The Shared Libraries view of the Debug perspective lets you view information about the shared libraries
loaded in the current debug session.

Load Symbols
Loads the symbols of the selected library. This option does not affect the libraries with loaded
symbols.

Load Symbols For All
Loads the symbols of the libraries used in the current session.

Auto-Refresh
Updates the shared library information each time execution stops.

Refresh
Updates the shared library information as required.

Show Full Paths
Displays the full path of libraries.

Debug information

Debugging

Views

Signals view
The Signals view of the Debug perspective lets you view the signals defined on the selected debug target
and how the debugger handles each one.

Name
Displays the name of the signal.

Pass
Where "yes" is displayed, the debugger lets your program see the signal. Your program can handle
the signal, or else it may terminate if the signal is fatal and not handled.

Suspend
Where "yes" is displayed, the debugger suspends your program when this signal is handled.

Description
Displays a description of the signal.

Debug information

Debugging

Views

Debug view
The Debug view shows the target information in a tree hierarchy shown below with a sample of the possible
icons:

Session item Description Icons

Launch instance Launch configuration name and launch type

Debugger instance Debugger name and state

Thread instance Thread number and state

Stack frame instance Stack frame number, function, file name, and file line number

The number beside the thread label is a reference counter, not a thread identification number (TID).

The CDT displays stack frames as child elements. It displays the reason for the suspension beside the
target, (such as end of stepping range, breakpoint hit, and signal received). When a program exits, the exit
code is displayed.

In addition to controlling the individual stepping of your programs, you can also control the debug session.
You can perform actions such as terminating the session and stopping the program by using the debug
launch controls available from Debug view.

Action Icon Description

Terminate Ends the selected process

Disconnect Detaches the debugger from the selected process (useful for
debugging attached processes)

Remove All
Terminated Clears all the killed processes in Debug view

Terminate and
Remove Ends the selected process and remove it from Debug view

Relaunch Restarts the process

Terminate All Ends all active processes in Debug view

Debug overview
Debug information

Debugging

Run and Debug dialog box

Debug preferences
The Debug view of the Debug perspective displays information about the variables in the currently
selected stack frame.

Show full paths
Displays the full path of resources

Default variable format
Specifies the number system in which to display variables (Natural, Hexadecimal or Decimal).

Default expression format
Specifies the number system in which to display expressions (Natural, Hexadecimal or Decimal).

Default register format
Specifies the number system in which to display registers (Natural, Hexadecimal or Decimal).

Automatically switch to disassembly mode
Automatically examines your program in disassembly mode as it steps into functions for which you
do not have source code, such as printf().

Debug information

Debugging

Views

C/C++ Icons
The table below lists the icons displayed in the C/C++ perspective.

Icon Description

C or C++ file

Class

Code template

Macro Definition

Enum

Enumerator

Variable

Field private

Field protected

Field public

Include

Makefile

Method private

Method protected

Method public

Namespace

Struct

Typedef

Union

Function

Project file views
Outline view

Displaying C/C++ file components in the C/C++ Projects view

Views

C/C++ Menubar
This section describes the menubar options available from the C/C++ perspective.

File Menu actions
Edit Menu actions
Navigate Menu actions
Search Menu actions
Project Menu actions
Run Menu actions
Window Menu actions

File Menu actions

Name Function Keyboard Shortcut

New Create a new project, folder, or file. Alt+Shift+N

Close Close the current editor. If the editor contains unsaved
data, a save request dialog is shown.

Ctrl+F4

Close All Close all editors. If editors contains unsaved data, a save
request dialog will be shown.

Ctrl+Shift+F4

Save Save the content of the current editor. Disabled if the editor
does not contain unsaved changes.

Ctrl+S

Save As Save the content of the current editor under a new name.

Save All Save the content of the current editor. Disabled if no editor
contains unsaved changes.

Ctrl+Shift+S

Revert Revert the content of the current editor back to the content
of the saved file. Disabled if the editor does not contain
unsaved changes.

Move Move a resource.

Rename Renames a resource. F2

Refresh Refreshes the content of the selected element with the
local file system. When launched from no specific selection,
this command refreshes all projects.

F5

Print Prints the content of the current editor. Enabled when an
editor has the focus.

Ctrl+P

Switch workspace... Relaunches Eclipse with a new workspace.

Open External File... Opens a file in the editor view.

Import Opens the Import dialog and shows all import wizards.

Export Opens the Export dialog and shows all export wizards.

Properties Opens the property pages of the select elements. Alt+Enter

Exit Exit Eclipse

Edit Menu actions

Name Function Keyboard Shortcut

Undo Revert the last change in the editor Ctrl+Z

Redo Revert an undone change Ctrl+Y

Cut Copies the currently selected text or element to the
clipboard and removes the element. On elements,
the remove is not performed before the clipboard is
pasted.

Ctrl+X

Copy Copies the currently selected text or elements to the
clipboard Ctrl+C

Paste Paste the current content as text to the editor, or as
a sibling or child element to the a currently selected
element.

Ctrl+V

Delete Delete the current text or element selection. Delete

Select All Select all the editor content.. Ctrl+A

Find / Replace Open the Find / Replace dialog. Editor only. Ctrl+F

Find Next Finds the next occurrence of the currently selected
text. Editor only.

Ctrl+K

Find Previous Finds the previous occurrence of the currently
selected text. Editor only. Ctrl+Shift+K

Incremental Find Next
Starts the incremental find mode. After invocation,
enter the search text as instructed in the status bar.
Editor only.

Ctrl+J

Incremental Find Previous
Starts the incremental find mode. After invocation,
enter the search text as instructed in the status bar.
Editor only.

Ctrl+Shift+J

Add Bookmark... Add a bookmark to the current text selection or
selected element.

Add Task... Add a user defined task to the current text selection
or selected element.

Alt+Enter

Shift Right Shifts text Right. Editor only Ctrl+I

Shift Left Shifts text Left. Editor only Ctrl+Shift+I

Next Problem Moves to the next problem encountered. Ctrl+.

Previous Problem Navigates to the previous problem encountered. Ctrl+,

Content Assist

Opens a context assist dialog at the current cursor
position to bring up Java code assist proposals and
templates. See the Templates preference page for
available templates Window > Preferences > C/C+
+ > Code Templates and go to the Editor
preference page Window > Preferences > C/C++ >
C/C++ Editor > Content Assist for configuring the
behaviour of content assist.

Ctrl+Space

Convert Line Delimiters to

Toggles line delimeters to
● CRLF (Windows)
● LF (UNIX, MacOS X)
● CR (Classic MacOS)

Encoding Toggles the encoding of the currently shown text
content.

Note: Other Edit options are used with the JDT. Refer to the Java Development User Guide for details.

Navigate Menu actions

Name Function Keyboard Shortcut

Go Into Sets the view input to the currently selected element.

Go To ● Back: This command displays the hierarchy
that was displayed immediately prior to the
current display. For example, if you Go Into a
resource, then the Back command in the
resulting display returns the view to the same
hierarchy from which you activated the Go Into
command. This command is similar to the Back
button in an HTML browser.

● Forward: This command displays the
hierarchy that was displayed immediately after
the current display. For example, if you've just
selected the Back command, then selecting the
Forward command in the resulting display
returns the view to the same hierarchy from
which you activated the Back command. This
command is similar to the Forward button in an
HTML browser.

● Up one level: This command displays the
hierarchy of the parent of the current highest-

level resource.
● Resource: This command allows you to

navigate quickly to a resource. For more
information see the links to related tasks below.

Open Type Brings up the Open Type selection dialog to open a
type in the editor. The Open Type selection dialog
shows all types existing in the workspace.

Ctrl+Shift+T

Open Resource This command displays a dialog that lets you select
any resource in the workspace to open it in an editor. Ctrl+Shift+R

Show In This sub-menu is used to find and select the currently
selected resource in another view. If an editor is active,
these commands are used to select the resource
currently being edited in another view.

Ctrl+Shift+W

Next The "next" definition is based on where the focus is.
For example, during a search this entry becomes Next
Match.

Ctrl+.

Previous
The "previous" definition is based on where the focus
is. For example, during a search this entry becomes
Previous Match.

Ctrl+,

Go to Last Edit Location Moves the cursor to the line that contains the last edit.
Editor only.

Ctrl+Q

Go to Line Open a dialog where you can specify the line number
to which to move the cursor. Editor only.

Ctrl+L

Back Moves the focus to the previous file. Editor only. Ctrl+Q

Forward Returns the focus from the previous file. Editor only. Ctrl+Q

Note: Other Navigate options are used with the JDT. Refer to the Java Development User Guide for
details.

Search Menu actions
Search menu commands open the search dialog. There are specialized tabs on the general Search
dialog to help you search for:

● Files, or for text in files
● Elements in C/C++ files
● Text in the online help
● Plug-ins.

Name Function Keyboard
Shortcut

C/C++... Opens the search dialog on the C/C++ search page
Search... Opens the search dialog for your current editor Ctrl + H
File... Opens the search dialog on the File search page

Coding aids
C/C++ search

Searching for C/C++ elements
Customizing the C/C++ editor

C/C++ editor preferences
Search dialog
Search view

Project Menu actions

Name Function Keyboard Shortcut

Open Project Shows a dialog that can be used to select a closed project
and open it.

Close Project Closes the currently selected projects.

Build All Builds all projects in the workspace. This is a full build; all files
are built. Ctrl+B

Build Project Builds the currently selected project. This is a full build; all files
in the project are built.

Clean Invokes the make clean defined in the makefile

Build Automatically
When checked, the CDT will perform a build whenever a file in
a project is saved. You should turn this feature off for very
large projects.

Create Make Target Creates a target in the Make Targets view. Standard Make
only

Build Make Target Builds a specific make target defined in your makefile such as
make clean or make install. Standard Make only.

Properties

Displays the Properties dialog. From that dialog you can
display the properties of resources in Info, External Tools
Builders, C/C++ Build (managed only) File Types, Indexer
options, C/C++ Make Project (standard only), C/C++ Project
Paths (standard only), Include Paths and Symbols
(standard only), and Project References.

C/C++ compiler

Building a program

file:///C|/test/docs/Concepts/cdtconcepts-4.htm
file:///C|/test/docs/Tasks/cdttasks-106.htm

Run Menu actions

Name Function Keyboard Shortcut

Run Last Launched This command allows you to quickly repeat the most
recent launch in run mode.

Ctrl+F11

Debug Last Launched This command allows you to quickly repeat the most
recent launch in debug mode.

F11

Run History Presents a sub menu of the recent history of launch
configurations launched in run mode.

Run As Presents a sub menu of registered run launch shortcuts.
Launch shortcuts provide support for workbench or active
editor selection sensitive launching.

Run... This command realizes the launch configuration dialog to
manage run mode launch configurations.

Debug History Presents a sub menu of the recent history of launch
configurations launched in debug mode.

Debug As Presents a sub menu of registered debug launch
shortcuts. Launch shortcuts provide support for
workbench or active editor selection sensitive launching.

Debug... This command realizes the launch configuration dialog to
manage debug mode launch configurations.

External Tools Presents a sub menu of links to external run configuration
dialogs to manage run mode launch configurations.

Window Menu actions

Name Function Keyboard Shortcut

New Window Window menu commands:

Open Perspective

This command opens a new perspective in this
Workbench window. This preference can be changed in
the Window > Preferences > Workbench >
Perspectives page. All of the perspectives that are
open within the Workbench window are shown on the
shortcut bar. The perspectives you will likely want to
open are listed first.This list is dependent on the current
perspective. From the Other... submenu you can open
any perspective.

Show View

This command displays the selected view in the current
perspective. You can configure how views are opened in
the Window > Preferences > Workbench >
Perspectives page. Views you are likely to want to
open are listed first.This list is dependent on the current
perspective. From the Other... submenu you can open
any view. The views are sorted into categories in the
Show View dialog.

Customize Perspective

Each perspective includes a predefined set of actions
that are accessible from the menu bar and Workbench
toolbar. Related actions are grouped into action sets.
This command allows you to customize the current
perspective by showing or hiding various action sets.
The first three (File > New, Window > Open
Perspective, Window > Show View) control which
actions appear as top level items in their respective
menus. The last category (Other) controls which action
sets are visible in the perspective.

Save Perspective As

This command allows you to save the current
perspective, creating your own custom perspective. You
can open more perspectives of this type using the
Window > Open Perspective > Other menu item once
you have saved a perspective.

Reset Perspective This command changes the layout of the current
perspective to its original configuration.

Close Perspective This command closes the active perspective.

Close All Perspectives This command closes all open perspectives in the
Workbench window.

Navigation

This submenu contains shortcut keys for navigating
between the views, perspectives, and editors in the
Workbench window.

● Show System Menu: Shows the menu that is
used for resizing, closing or pinning the current
view or editor.

● Show View Menu: Shows the drop down menu
that is available in the toolbar of the active view.

● Maximize Active View or Editor: Maximizes the
current view or editor to fill the workbench.

● Activate Editor: Makes the current editor active.
● Next Editor: Activates the next open editor in the

list of most recently used editors.
● Previous Editor: Activates the previous open

editor in the list of most recently used editors.
● Next View: Activates the next open view in the

list of most recently used views.
● Previous View: Activates the previous open

view in the list of most recently used views.
● Next Perspective: Activates the next open

perspective in the list of most recently used
perspectives.

● Previous Perspective: Activates the previous
open perspective in the list of most recently used
perspectives.

Preferences

This command allows you to indicate your preferences
for using the Workbench. There are a wide variety of
preferences for configuring the appearance of the
Workbench and its views, and for customizing the
behavior of all tools that are installed in the Workbench.
See the C/C++ Page Preference Window section for
more details on the CDT preferences.

C/C++ Toolbar

C/C++ Toolbar icons
Icon Command Description

Create New Create a new project, folder, or file.

Save Save the content of the current editor. Disabled if the editor does not
contain unsaved changes.

Print Prints the content of the current editor.

Create C++ Class Creates a C++ class within the current project.

Create Folder Creates a folder within the current project.

Create File Creates a file within the current project.

Debug Launches the Debug dialog box.

Run Launches the Run dialog box

External Tools Launches the External Tools dialog box

Open Type Brings up the Open Type selection dialog to open a type in the editor. The
Open Type selection dialog shows all types existing in the workspace.

Search Launches the C/C++ Search dialog box

Synchronize Synchronizes selected project to CVS repository.

Go to Last Edit Location Returns editor view to the last line edited, if the file that was last edited
was closed it will be re-opened.

Back Navigates back through open files.

Forward Navigates forward through open files.

Go to Next Problem Navigates to the next problem marked during the last build attempt.

Go to Previous Problem Navigates to the previous problem marked during the last build attempt.

C/C++ Open Type
Use Open Type to open up the declaration of C/C++ classes, structures, unions, typedefs, enumerations
and namespaces.

Create a Make Target
You can define build settings when you create a Make Target.

Target Name
Name of the Make Target.

Make Target
The reference to the make section in your makefile.

Use default
Select this checkbox to use the default make command. Clear the check box to specify a new
make command.

Build command
If you clear the Use default checkbox type a new make command in this field.

Stop on first build error
Stops the build when an error occurs.

Run all project builders
Runs additional project builders such as discovery.

Build overview
Makefile

Creating a makefile
Creating a Make Target
Defining build settings

C/C++ Find/Replace
Ctrl+F (or Edit > Find/Replace) displays the Find/Replace dialog. Here you can specify text to search for
and optionally text with which to replace it.

You can specify:

● The direction (forward or back from the current cursor location)
● The scope (All for the whole file or Selected Lines to search only within the highlighted area)
● Whether the search is Case Sensitive or Whole Word. You can also specify whether the search

wraps at the end of the file.

If you close the Find/Replace dialog with text in the Find field, you can use Ctrl+K (or Edit > Find Next)
or Ctrl+Shift+K (or Edit > Find Previous) to go to the next occurrence of that text. The directions for
"Next" and "Previous" are not affected by the Direction setting in the Find/Replace dialog.

Note: Wildcards are not currently supported for searches.

Incremental Find

You can also choose Incremental Find from the Find/Replace dialog. With this option selected, each
letter you type in the Find field causes the editor focus to move to the first complete occurrence of the text
you are typing. You can also use incremental find by pressing Ctrl+J (Edit > Incremental Find). In this
case, the text you type appears in the Status Line at the bottom of the Eclipse window.

Note: The settings in the Find/Replace dialog do not affect the operation of incremental find in the Status
Line.

C/C++ preferences
The C/C++ Preference dialog box allows you to make changes to your C/C++ environment.

Link view selection to active editor
Select this checkbox to open an item selected in the Projects view, in the Editor view.

Show file members in Project View
Select this checkbox to browse your C and C++ file members in the Projects view.

Follow #include's when producing the outline view.
Select this checkbox to follow all defined #includes when you produce the Outline view.
Note: This is not recommended for large projects or large files.

C/C++ Submenu Items

Build Console
Preferences for customize the appearance of the Build Console view.

Editor
Preferences for customizing the C/C++ editor.

Code Templates
Manipulate any of the common code templates that are predefined within the CDT.

Debug
Preferences for customizing the Debugger.

GDB MI

Preferences for customizing the GDB MI.
Source Code Locations

Modify, add or remove source code locations
Editor

Set preferences for the C/C++ editor
File Types

Define which file extensions are linked to specific languages
Make Targets

Set preferences for make target build settings
New Make Projects

Set preferences for customizing Make Builder settings
Search

Set preferences for customizing the Search configuration

Views

Build Console preferences
You can customize the appearance of the Build Console view.

Always clear console before building
Select this checkbox to clear the console whenever you perform a build.

Open console when building
Select this checkbox to open the console build when you perform a build.

Bring console to top when building (if present)
Select this checkbox to bring the build console to the front when you perform a build.

Limit console output (#lines)
You specify the maximum number of lines that appear in the build console view.

Display tab width
You can specify the number of spaces for a tab.

Output text color
You can customize the color of text in the build console.

Information message text color
You can customize the color of information text messages in the build console.

Error message text color
You can customize the color of error text messages in the build console.

Build overview

Defining Build Settings
Building

Views

Code Templates preferences
You can manipulate any of the common code templates that are predefined within the CDT. To modify, delete, export, import, or
create your own templates click Window > Preferences > C/C++ > Code Templates.

New

Creates a new code template.
Edit

Edits the code template that is selected in the list.
Remove

Removes the selected code templates from the list.
Import

Imports a code template.
Export

Exports the selected code templates.
Export All

Exports all templates in the list.
Enable All

Makes all templates available when you invoke the Content Assist feature.
Disable All

Makes all templates unavailable when you invoke the Content Assist feature.

Coding aids

Customizing the C/C++ editor
Working with Content Assist

C/C++ editor preferences

Debug page, Preferences window
You can manipulate any of the common predefined debug settings by clicking Window > Preferences >
C/C++ > Debug.

Show Full Paths

Select this checkbox to show the full path to files and directories.
Automatically refresh registers

Select this checkbox to refresh registers before debugging.
Automatically refresh shared libraries

Select this checkbox to refresh links to shared libraries before debugging.
Default variable format:

Select the default variable format from either Natural, Decimal or Hexidecimal.
Default expression format:

Select the default expression format from either Natural, Decimal or Hexidecimal.
Default register format:

Select the default register format from either Natural, Decimal or Hexidecimal.
Maximum number of instructions:

Enter the maximum number of disassembly instruction in the field provided.

Debug GDB MI page, Preferences window
You can manipulate certain GDB timeout settings Window > Preferences > C/C++ > Debug > GDB MI.

Debugger timeout (ms)

Sets the timout value for the debugger.
Launch timeout (ms)

Sets the Launch timeout for a debug session.

Source Code Locations page, Preferences window
You can add or remove source code locations by clicking Window > Preferences > C/C++ > Debug >
Source Code Locations.

Add

Insert a new source code location.
Up

Move the currently selected source code location higher in the list.
Down

Move the currently selected source code location lower in the list.
Remove

Remove the currently selected souce code location.
Search for duplicate source files

Searches the source locations for duplicate entries.

C/C++ editor preferences
This section describes how to set preferences for the C/C++ editor.

General preferences
Color preferences
Content Assist preferences
Hover preferences
Navigation preferences

General preferences
You can customize the appearance of the C/C++ editor on the General page of the Preferences window.

Displayed tab width
Specifies the width of the tab as a number of characters. For example a value of 4, means that the tab width is 4-
characters wide.

Print margin column
Specifies the width of the print margin as a number of characters. For example a value of 80 means that the print area
is 80-characters wide.

Show overview ruler
Displays the vertical ruler in the editor view.

Show line numbers
Displays line numbers in the left margin.

Highlight matching brackets
When the cursor is beside a bracket, the matching bracket is highlighted.

Highlight current line
Highlights the line that was last selected.

Show print margin
Displays the print margin in the editor.

Insert space for tabs
Inserts a space instead of a tab character when you press Tab.

Use custom caret
Select a custom caret (vertical bar icon showing cursor position).

Enable thick caret
Displays a thicker caret (vertical bar icon showing cursor position).

Appearance color options
Lists the items for which you can specify a color.

Color
Changes the color of the item that is selected in the list.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

Color preferences
You can customize the appearance of the C/C++ editor on the Colors page of the Preferences window.

System Default
Uses the system default for the background color.

Custom
Changes the background color.

Foreground
Lists items, such as comments, keywords, and strings, for which you can specify a color.

Color
Specifies the color in which to display the selected item.

Bold
Makes the selected item bold.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

Content Assist preferences
You can customize the Content Assist feature on the Contents Assist page of the C/C++ Editor Preferences window. To
change the Content Assist preferences click Window > Preferences > C/C++ > C++ Editor > Content Assist.

Search scope for completion proposals
You can configure the Content Assist feature to select proposals from items contained only in the current file and
included files, or from the current project.

Insert single proposals automatically
Inserts an element into your code when the Content Assist feature finds only one proposal.

Present proposals in alphabetical order
Proposals, by default, appear in order of relevance determined by context, scope and prefix. Alternatively, you can
configure the Content Assist feature to order its proposals alphabetically.

Content Assist parsing timeout (ms)

For very large projects, the Content Assist feature might slow the response of the plug-in as the Content Assist feature
parses the project for proposals. This setting stops the Content Assist parse when it reaches the specified threshold.

Auto activation
Certain predefined triggers force the Content Assist feature to activate. You can disable the predefined triggers with
these checkboxes.

Auto activation delay
Specifies the number of milliseconds before Content Assist is activated, in Autoactivation mode.

Background for completion proposals
Specifies the background color of the Content Assist dialog box.

Foreground for completion proposals
Specifies the foreground color of the Content Assist dialog box.

Coding aids

Customizing the C/C++ editor
Working with Content Assist

C/C++ editor preferences

Hover preferences
You can customize the appearance of the C/C++ editor hover behavior on the Hovers page of the Preferences window.

Enable editor problem annotation
When selected problems found will be highlighted in the editor.

Text Hover key modifier preferences:
You can select hot-keys to enable alternate hover behavior such as a mouse over while pressing the <Ctrl> key will
link to the element's source declaration.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

Navigation preferences
Enable the editor hyperlink navigation and then you can use Ctrl+click to jump to the declaration of an item on the C/C++
editor

Enable Hyperlink Navigation
Select this checkbox to support hyperlink style navigation for Open Declaration.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

C/C++ File Types page, Preferences window
You can define which file extensions are linked to specific languages.

New
Add a new File Type definition.

Remove
Remove the currently selected File Type definition.

Coding aids

Customizing the C/C++ editor

C/C++ editor preferences

Make Targets page, Preferences window
You can force the building of make targets in the background.

Build Make target in the background
Select this checkbox to perform builds in the background.

Build overview

Defining Build Settings
Building

Views

New Make Projects properties
In this section, learn about the C/C++ New Make Projects properties pages.

Make Builder preferences
Error Parser preferences
Binary Parser preferences
Discovery Options preferences

Make Builder page, C/C++ Preferences window
You can define build settings on the Make Builder page of the C/C++ Preferences window.

Use default
Select this checkbox to use the default make command. Clear the check box to specify a new make command.

Build command
If you clear the Use default checkbox type a new make command in this field.

Stop on first build error
Stops the build when an error occurs.

Workbench Build Behavior
These settings are what the standard builder will call by default when told to build, rebuild, clean, etc. You can change
these so that new projects will use different targets if the defaults are not appropriate.

Build on resource save (Auto Build)
This defines what the standard builder will call when a file is saved, it is not recommended to enable Auto Build for C/C
++ projects.

Build overview

Defining build settings

Project properties

Error Parsers, C/C++ Preferences window
You can view a list of the filters that detect error patterns in the build output log, on the Error Parsers page of the Preferences
window.

Error Parsers
Lists the various error parsers which can be enabled or disabled.

Up
Moves the selected error parser higher in the list.

Down
Moves the selected error parser lower in the list.

Select All
Selects all error parsers.

Unselect All
Clears all error parsers.

Build overview

Filtering errors

Project properties

Binary Parser page, C/C++ Preferences window
You can view a list of binary parsers on the Binary Parser page of the C/C++ Preferences window.

Binary Parser
Select binary parsers from the list, and changed the order in which they are used.

Binary Parser Options
If a binary parser has parser options you can define them in this section.

Build overview

Selecting a binary parser

Project properties

Discovery Options page, C/C++ Preferences window
You can define the discovery options on the Discovery Options page of a C/C++ Preferences window.

Automate discovery of paths and symbols
Select this checkbox to scan the build output for paths and symbols.

Build output parser options
This section allows you to select the make build output parser.

Generate scanner info command options
Select to invoke secondary paths and symbols provider (such as GNU specs).

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

Search, C/C++ Preferences window
You can configure various options for the search configuration on the Search page of the C/C++
Properties window.

Enable external search markers
Select this checkbox to enable searches in external files.

Enable Marker Link Type
Select visible or invisible markers.

Indexer Timeout:
Enter the timeout delay (in milliseconds) in the field provided.

Coding aids
C/C++ search

Searching for C/C++ elements
Customizing the C/C++ editor

C/C++ search page, Search window
Search action
Search view

Project Properties
This section describes C/C++ Project Properties. To select project properties, right click a project and
select Properties.

CDT projects

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed Make Project
This section describes properties for a Managed make project.

Info
Builders
Build
File Types
Indexer
Error Parser
Project References

C/C++ Project Properties, Managed, Info

Info
Shows project information.

Default encoding for text files
You can specify an alternate text encoding.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options

C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Builders
You can select which Builders to enable for this project and in which order they are used.

Builders
Select which Builders to enable.

New..
Add a new builder.

Import..
Import a builder.

Edit..
Edit a builder.

Remove
Remove a builder.

Up
Move the currently selected builder higher in the list.

Down
Move the currently selected builder lower in the list.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders

C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Build
Customizes your build configuration, compiler and compile options.

Platform:
Select the platform from the list provided.

Configurations:
Select the build configuration from the list provided.

Manage...
You can change the make command, make flags, add and remove configurations, and change the name of the
build goal.

Configuration Settings
Edit individual options.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types

C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, File Types
You can view a list of file types on the File Types page of a C/C++ project's properties window.

Use workspace settings
Select this to use the Managed workspace settings.

Use Project Settings
Select this option to use project settings, or add or remove specific file types.

New...
Add a new file type.

Remove
Remove a listed file type.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types

C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Indexer
You can select which C/C++ Indexers to use for your project. The indexer is necessary for search and related features, like
content assist.

Enable C/C++ Indexing
When selected C++ Indexing is enabled for this project.

Enable C++ Index problem reporting
When selected, any index related errors detected will be reported.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder

C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Error Parser
You can view a list of the filters that detect error patterns in the build output log, on the Error Parsers page of a C/C++
project's preferences window.

Error Parsers
Lists the various error parsers which can be enabled or disabled.

Up
Moves the selected error parser higher in the list.

Down
Moves the selected error parser lower in the list.

Select All
Selects all error parsers.

Unselect All
Clears all error parsers.

Build overview

Filtering errors

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Binary Parser
You can select the Binary Parsers you require for the project.

To ensure the accuracy of the C/C++ Projects view and the ability to successfully run and debug your programs. After you
select the correct parser for your development environment and build your project, you can view the symbols of the .o file
in the C/C++ Projects view.

Binary Parser
Select a binary parser from the list.

Binary Parser Options
If a binary parser has parser options you can define them in this section.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

Build overview

Selecting a binary parser

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Managed, Project References

Project references for <project>:
Select the projects required to build this project.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers

C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard Make Project
This section describes properties for a Standard make project.

Info
Builders
File Types
Include Paths and Symbols
Indexer
Make Project

Make Builder
Error Parser
Binary Parser
Discovery Options

Project Paths
Source
Output
Projects
Libraries
Path Containers

Project References

C/C++ Project Properties, Standard, Info

Info
Shows project information.

Default encoding for text files
You can specify an alternate text encoding.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder

C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Builders
You can select which Builders to enable for this project and in which order they are used.

Builders
Select which Builders to enable.

New..
Add a new builder.

Import..
Import a builder.

Edit..
Edit a builder.

Remove
Remove a builder.

Up
Move the currently selected builder higher in the list.

Down
Move the currently selected builder lower in the list.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, File Types
You can view a list of file types on the File Types page of a C/C++ project's properties window.

Use workspace settings
Select this to use the Standard workspace settings.

Use Project Settings
Select this option to use project settings, or add or remove specific file types.

New...
Add a new file type.

Remove
Remove a listed file type.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Include Paths and Symbols
You can modify the list of included paths and preprocessor symbols and change the order in which they are referenced.

Add Folder/File...
Add a new file or folder to the existing project.

Show Inherited Paths
Select this to show all paths, including those that were inherited.

Add Preprocessor Symbol...
Add a new preprocessor symbol.

Add External Include Paths...
Add a new include path.

Add Include Path from Workspace...
Add an include path from another project in the workspace.

Add Contributed...
Add a contributed path or symbol.

Edit
Edit the currently selected path or symbol.

Remove

Remove the currently selected path or symbol.
Export

Export the currently selected path or symbol to a text file.
Down

Move the currently selected path or symbol down in the list.
Up

Move the currently selected path or symbol up in the list.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Indexer
You can select which C/C++ Indexers to use for your project. The indexer is necessary for search and related features, like
content assist.

Enable C/C++ Indexing
When selected C++ Indexing is enabled for this project.

Enable C++ Index problem reporting
When selected, any index related errors detected will be reported.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types

C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Make Project
This section describes C/C++ Make Project Properties for a Standard make project.

Make Builder
Error Parser
Binary Parser
Discovery Options

C/C++ Project Properties, Standard, Make Builder
You can define build settings on the Make Builder page of a C/C++ project's preferences window.

Use default
Select this checkbox to use the default make command. Clear the check box to specify a new make command.

Build command
If you clear the Use default checkbox type a new make command in this field.

Stop on first build error
Stops the build when an error occurs.

Workbench Build Behavior
These settings are what the standard builder will call by default when told to build, rebuild, clean, etc. You can change
these so that new projects will use different targets if the defaults are not appropriate.

Build on resource save (Auto Build)
This defines what the standard builder will call when a file is saved, it is not recommended to enable Auto Build for C/C
++ projects.

Build overview

Defining build settings

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Error Parser
You can view a list of the filters that detect error patterns in the build output log, on the Error Parsers page of a C/C++
project's preferences window.

Error Parsers
Lists the various error parsers which can be enabled or disabled.

Up
Moves the selected error parser higher in the list.

Down
Moves the selected error parser lower in the list.

Select All
Selects all error parsers.

Unselect All
Clears all error parsers.

Build overview

Filtering errors

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Binary Parser
You can select the Binary Parsers you require for the project.

To ensure the accuracy of the C/C++ Projects view and the ability to successfully run and debug your programs. After you
select the correct parser for your development environment and build your project, you can view the symbols of the .o file in
the C/C++ Projects view.

Binary Parser
Select a binary parser from the list.

Binary Parser Options
If a binary parser has parser options you can define them in this section.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

Build overview

Selecting a binary parser

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Discovery Options
You can define the discovery options on the Discovery Options page of a C/C++ project's properties window.

Automate scanner configuration discovery
Select this checkbox to configure the automatic discovery of paths and symbols.

Build output parser options
Monitors the output of the build to automatically keep the list of include paths and symbols up to date with the makefile.

Generate scanner info command options
This section allows you to select the scanner info settings.

Restore Defaults
Returns any changes back to their default setting.

Apply
Applies any changes.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders

C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Project Paths
This section describes C/C++ Project Path Properties of a Standard make project.

Source
Output
Projects
Libraries
Path Containers

C/C++ Project Properties, Standard, Project Paths, Source

Add Folder
Add a source folder.

Edit..
Edit a source folder.

Remove
Remove a source folder.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser

C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Project Paths, Output

Add Folder
Add an output folder.

Edit..
Edit an output folder.

Remove
Remove an output folder.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser

C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Project Paths, Projects

Required projects on the build path
Selecting a project will include any exported paths and symbols from the selected project.

Select All
Click to select all projects listed in the Required projects on the build path window.

Deselect All
Click to deselect all projects listed in the Required projects on the build path window.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser

C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Project Paths, Libraries

Add External Library...
Add and external library.

Add from Workspace...
Add a library from a project in your workspace.

Add Contributed...
Add a contributed library.

Edit...
Edit the currently selected library.

Remove
Remove the currently selected library.

Export
Export the currently selected library to a text file.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders

C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project Properties, Standard, Project Paths, Path
Containers

Add....
Add a new path container.

Edit...
Edit the currently selected path container.

Remove
Remove the currently selected path container.

Export
Export the currently selected path container to a text file.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser

C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output
C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

C/C++ Project, Standard, Project References

Project references for <project>:
Select the projects required to build this project.

C++ Project Properties, Standard, Info
C++ Project Properties, Standard, Builders
C++ Project Properties, Standard, File Types
C++ Project Properties, Standard, Include Paths and Symbols
C++ Project Properties, Standard, Indexer
C++ Project Properties, Standard, Make Builder
C++ Project Properties, Standard, Error Parser
C++ Project Properties, Standard, Binary Parser
C++ Project Properties, Standard, Discovery Options
C++ Project Properties, Standard, Source
C++ Project Properties, Standard, Output

C++ Project Properties, Standard, Projects
C++ Project Properties, Standard, Libraries
C++ Project Properties, Standard, Path Containers
C++ Project Properties, Standard, Project References
C++ Project Properties, Managed, Info
C++ Project Properties, Managed, Builders
C++ Project Properties, Managed, Build
C++ Project Properties, Managed, File Types
C++ Project Properties, Managed, Indexer
C++ Project Properties, Managed, Error Parser
C++ Project Properties, Managed, Project References

New Project Wizard
The New Project wizard helps you create a new C or C++ project in the workbench. To access the
wizard, from the menu bar select File > New > Project. The New Project wizard appears:

With the New Project wizard you can choose to:

● Create a Managed Make C Project
● Create a Standard Make C Project
● Create a Managed Make C++ Project
● Create a Standard Make C++ Project

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

Managed Make, Name
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

C/C++ New Project Wizard, Managed Make Project
This section describes properties for creating a Managed make project in the C/C++ New Project Wizard.

Name
Select a Target
Referenced Projects
Error Parsers
C/C++ Indexer

file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Managed Make, Name
Select a name for the project. You can also enter a new path for your project by deselecting the Use
Default Location checkbox and entering the new path in the Location text box.

Name Function
Name Specifies the name of the project.
Use Default Location When selected the new project will be created in the default workspace location.

Location If Use Default Location is not selected, enter the location where the project is to
be created.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm

Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Managed Make, Select a Target
You can enter the build targets and build configurations from this page of the wizard.

Name Function
Build Target You can select a build target from the drop down list.
Configurations Specifies which build configurations will be supported for your project.

Show All Targets If selected, all known targets will appear in the Configurations window, by default,
the list is filtered so that only targets for the host OS are shown.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Managed Make, Error Parsers
You can select which error parsers to use and in which order they are used for your project.

Name Function
Error Parsers You can select which Error Parsers to enable from this window.
Up Moves the currently selected Error Parser higher in the ordered list.
Down Moves the currently selected Error Parser lower in the ordered list.
Select All Selects all Error Parsers.
Unselect All Unselects all Error Parsers.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Managed Make, C/C++ Indexer
You can select which C/C++ Indexers to use for your project from this page of the wizard. The indexer is
necessary for search and related features, like content assist.

Name Function
Enable C++ Indexing When selected C++ Indexing is enabled for this project.
Enable C++ Index problem reporting When selected, any index related errors detected will be reported.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

C/C++ New Project Wizard, Standard Make Project
This section describes properties for creating a Standard make project in the C/C++ New Project Wizard.

Name
Referenced Projects
Make Builder
Error Parsers
Binary Parser
Discovery Options
C/C++ Indexer

New Project Wizard - Standard Make, Name
Select a name for the project. You can also enter a new path for your project by deselecting the Use
Default Location checkbox and entering the new path in the Location text box.

Name Function
Name Specifies the name of the project.
Use Default Location When selected the new project will be created in the default workspace location.

Location If Use Default Location is not selected, enter the location where the project is to
be created.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, Referenced
Projects
Select project references from your workspace.

Name Function

Select Project References If you have any other projects in your workspace, you can select them as
references for this new C or C++ project.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, Make Builder
You can enter build configuration settings for your project from this page of the wizard.

Name Function
Build Command Specifies which make command to use when a build is performed.

Build Setting
Controls whether the compiler will Stop On Error or to keep building. If you
do not select Stop On Error this will force the compiler to attempt to build
all referenced projects even if the current project has errors.

Workbench Build Behavior
You can specify the behavior of builds predefined by the C/C++ toolkit by
linking them to specific build targets in your makefile. The predefined builds
are Auto Build, Incremental Build, Rebuild and, Clean

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, Error Parsers
You can select which error parsers to use and in which order they are used for your project.

Name Function
Error Parsers You can select which Error Parsers to enable from this window.
Up Moves the currently selected Error Parser higher in the ordered list.
Down Moves the currently selected Error Parser lower in the ordered list.
Select All Selects all Error Parsers.

Unselect All Unselects all Error Parsers.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Binary Parser
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, Binary Parser
You can select the Binary Parsers you require for the project.

Select the appropriate binary parser to ensure the accuracy of the C/C++ Projects view and the ability to
successfully run and debug your programs. After you select the correct parser for your development
environment and build your project, you can view the symbols of the .o file in the C/C++ Projects view.

Name Function

Binary Parser Select a binary parser from the list.
Binary Parser Options If a binary parser has parser options you can define them in this section.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Discovery Options
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, Discovery
Options
You can define the discovery options on the Discovery Options page of the C/C++ Preferences window.

Name Function

Automate scanner configuration discovery Select this checkbox to configure the scanner discovery to
run automatically.

Build output parser options This section allows you to select the output parser.
Generate scanner info command options This section allows you to select the scanner info settings.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, C/C++ Indexer

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

New Project Wizard - Standard Make, C/C++ Indexer
You can select which C/C++ Indexers to use for your project from this page of the wizard. The indexer is
necessary for search and related features, like content assist.

Name Function
Enable C++ Indexing When selected C++ Indexing is enabled for this project.
Enable C++ Index problem reporting When selected, any index related errors detected will be reported.

CDT projects

CDT Managed Make Tutorial
CDT Standard Make Tutorial

New Project Wizard
Managed Make, Select a Target
Managed Make, Referenced Projects
Managed Make, Error Parsers
Managed Make, C/C++ Indexer
Standard Make, Name
Standard Make, Referenced Projects
Standard Make, Make Builder
Standard Make, Error Parsers
Standard Make, Binary Parser
Standard Make, Discovery Options

file:///C|/test/docs/getting_started/cdt_w_basic.htm
file:///C|/test/docs/getting_started/cdt_w_standard.htm
file:///C|/test/docs/reference/cdt_u_new_proj_wiz_m_proj.htm

Run and Debug dialog boxes
This section describes the Run and Debug dialog boxes.

Main
Arguments
Environment
Debugger
Source
Common

Main page, Run or Debug dialog boxes
The Main page of the Run dialog box and the Debug dialog box, identifies the project and application you
want to run or debug.

Project
Specifies the name of the project.

C/C++ Application
Specifies the name of the application.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

Arguments page, Run or Debug dialog boxes
The Arguments page of the Run dialog box and the Debug dialog box lets you specify the execution
arguments that an application uses and the working directory for a run configuration.

C/C++ Project Arguments
Specifies the arguments that are passed on the command line.

Use default working directory
Clears the check box to specify a local directory or a different project in your workspace.

Local directory
Specifies the path of, or browse to, a local directory.

Workspace
Specifies the path of, or browse to, a workspace relative working directory.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

Environment page, Run or Debug dialog box
The Environment page of the Run dialog box and the Debug dialog box lets you set environment variables
and values to use when an application runs.

Name
Displays the name of environment variables.

Value
Displays the value of environment variables.

New
Creates a new environment variable.

Edit
Modifies the name and value of an environment variable.

Remove
Removes selected environment variables from the list.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

Debugger page, Run or Debug dialog box
The Debugger page of the Run dialog box and the Debug dialog box lets you select a debugger to use
when debugging an application.

Debugger
Selects debugger from the list.

Run program in debugger
Runs the program in debug mode.

Attach to running process
Prompts you to select a process from a list at run-time.

Stop at main() on startup
Stops program at main().

Enable variable bookkeeping
Updates variables in the Variables view. Individual variables can be updated manually in the
Variables view.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

Source page, Run or Debug dialog box
The Source page of the Run dialog box and the Debug dialog box lets you specify the location of source
files used when debugging a C or C++ application. By default, this information is taken from the build path
of your project.

Generic Source Locations
Displays the location of the project selected in the C/C++ Projects view and in any referenced
projects.

Additional Source Locations
Lists projects and directories added to the debugger search list.

Select All
Selects all items in the Generic Source Locations list.

Deselect All
Deselects all items in the Generic Source Locations list.

Add
Adds new projects and directories to the debugger search list.

Up
Moves selected items up the Additional Source Locations list.

Down
Moves selected items down the Additional Source Locations list.

Remove
Removes selected items from the Additional Source Locations list.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

Common page, Run or Debug dialog box
The Main page of the Run dialog box and the Debug dialog box lets you specify the location in which to
store your run configuration and how you access it and what perspective to open when running an
application.

Local
Saves the launch configuration locally.

Shared
Saves the launch configuration to a project in your workspace, and be able to commit it to CVS.

Location of shared configuration
Specifies the location of a launch configuration.

Run mode
Selects a perspective to switch to when you run an application.

Debug mode
Selects a perspective to switch to when you debug an application.

Run
Displays "Run" in favorites menu.

Debug
Displays in "Debug" favorites menu.

Debug overview
Debug information

Running and debugging

Run and Debug dialog box

C/C++ search

Search string
Specifies a search string.
The search functions support the following wildcards:

● Use * to represent any series of characters
● Use ? to represent any single character
● Use * to find an asterisk character (*)

Case sensitive
Searches will return results which match capitalization specified in the search string precisely.

Search for
Specify the types of elements to include in the search:

Search
for Description

Class/Struct Includes classes and structs in your search.

Function Searches for global functions or functions in a namespace (functions that are not members
of a class, struct, or union).

Variable Searches for variables that are not members of a class, struct, or union.
Union Searches for unions.
Method Searches for methods that are members of a class, struct, or union.
Field Searches for fields that are members of a class, struct, or union.
Enumeration Searches for enumerations.
Enumerator Searches for enumerators.
Namespace Searches for namespaces.
Any Element Includes all elements in the search.

Limit to
Specify the types of context to search:

Limit to Description
Declarations Limits the search to declarations.
Definitions Limits the search to definitions (for functions, methods, variables, and fields).
References Limits the search to references.
All Occurrences Includes declarations, definitions, and references in the search.

Scope
Choose the scope of the search:

Scope Availability Description
Workspace all elements Searches in the full workspace
Selected Resources all elements Searches the project selected in the Projects view
Workings Set all elements Searches in a working set

Working sets can be created and used from within the search dialog.

Coding aids
C/C++ search

Searching for C/C++ elements
Customizing the C/C++ editor

C/C++ editor preferences
Search action
Search view

	C/C++ Development Toolkit User Guide
	Before you begin
	What's new
	Getting Started
	How to bring C/C++ source files into Eclipse
	Updating the CDT

	Concepts
	CDT overview
	CDT projects
	Perspectives available to C/C++ developers
	Views in the C/C++ perspective
	Coding aids
	Comments
	Content Assist
	Templates

	Editing C/C++ Files
	C/C++ editor
	Makefile

	Navigation Aids
	Outline view
	Project file views
	Open declarations

	Build
	Building C/C++ projects
	Managed Build System Extensibility Document

	Debug
	Breakpoints
	Debug overview
	Debug information

	C/C++ search
	C/C++ Indexer
	C/C++ Indexer Problem Reporting
	C/C++ Indexer Opening or Closing a project
	C/C++ Indexer Progress Bar
	Searching External Files

	Tasks
	Creating a project
	Working with C/C++ project files
	Displaying C/C++ file components in the C/C++ Projects view
	Converting a C or C++ nature for a project
	Creating a C/C++ file
	Creating a makefile
	Hiding files by type in the C/C++ Projects view
	Converting CDT 1.x Projects
	Adding Convert to a C/C++ Make Project to the New menu
	Set Discovery Options

	Writing code
	Customizing the C/C++ editor
	Commenting out code
	Working with Content Assist
	Using Content Assist
	Creating and editing code templates
	Importing and exporting code templates

	Shifting lines of code to the right or left
	Navigating to C/C++ declarations
	Refactoring

	Building projects
	Renaming a project
	Selecting referenced projects
	Defining build settings
	Filtering errors
	Selecting a binary parser
	Adding Include paths and symbols
	Selecting a deployment platform
	Setting build order
	Building Manually
	Removing Build Automatically
	Autosaving on a build
	Creating a Make Target
	Customizing the Console view
	Viewing and managing compile errors
	Jumping to errors
	Filtering the Tasks view
	Setting reminders

	Running and debugging projects
	Creating or editing a run/debug configuration
	Selecting a run or debug configuration
	Creating a run or debug configuration
	Selecting an application to run or debug
	Specifying execution arguments
	Setting environment variables
	Defining debug settings
	Specifying the location of source files
	Specifying the location of the run configuration

	Debugging
	Debugging a program
	Working with breakpoints and watchpoints
	Adding breakpoints
	Adding watchpoints
	Removing breakpoints and watchpoints
	Enabling and disabling breakpoints and watchpoints

	Controlling debug execution in the Debug view
	Stepping into assembler functions
	Working with variables
	Adding expressions
	Working with registers
	Working with memory

	Searching for C/C++ elements
	Selection Searching for C/C++ elements
	Enable/Disable the C/C++ Indexer
	C/C++ Indexer Problem Reporting
	C/C++ Indexer – Indexer Timeout
	Setting Source Folders

	Reference
	C/C++ Views and Editors
	Selecting Views and Editors
	C/C++ Project Views
	Navigator view
	Outline view
	Make Targets view
	Editor view
	Console view
	Problems view
	Properties view
	Search view
	Debug views
	Registers view
	Memory view
	Memory view preferences
	Shared Libraries view
	Signals view
	Debug view
	Debug preferences

	C/C++ Icons

	C/C++ Menubar
	File Menu actions
	Edit Menu actions
	Navigate Menu actions
	Search Menu actions
	Project Menu actions
	Run Menu actions
	Window Menu actions

	C/C++ Toolbar
	C/C++ Open Type
	Create a Make Target
	C/C++ Find/Replace
	C/C++ preferences
	Build Console preferences
	Code Templates preferences
	Debug preferences
	Debug GDB MI preferences
	Source Code Locations preferences

	C/C++ editor preferences
	General preferences
	Color preferences
	Content Assist preferences
	Hover preferences
	Navigation preferences

	C/C++ File Types preferences
	Make Targets preferences
	New Make Project properties
	Make Builder preferences
	Error Parser preferences
	Binary Parser preferences
	Discovery Options preferences

	Search, C/C++ Properties window

	Project Properties
	Managed Make Projects
	Info
	Builders
	Build
	File Types
	Indexer
	Error Parser
	Binary Parser
	Project References

	Standard Make Projects
	Info
	Builders
	File Types
	Include Paths and Symbols
	Indexer
	Make Projects
	Make Builder
	Error Parser
	Binary Parser
	Discovery Options

	Project Paths
	Source
	Output
	Projects
	Libraries
	Path Containers

	Project References

	New Project Wizard
	Managed Make Project
	Name
	Select a Target
	Error Parsers
	C/C++ Indexer

	Standard Make Project
	Name
	Projects
	Make Builder
	Error Parsers
	Binary Parser
	Discovery Options
	C/C++ Indexer

	Run and Debug
	Main page
	Arguments page
	Environment page
	Debugger page
	Source page
	Common page

	C/C++ search

