C/C++ Development Toolkit User Guide

This guide provides instructions for using the C/C++ Development Toolkit (CDT) in the workbench.

Getting Started
Concepts
Tasks
Reference

Before you begin
What's new

& Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_ref.htm

Before you begin

Y ou must install and configure the following utilities:

. Build (such asnake).
. Compile (such as gcc). For more information, see http://gcc.gnu.org.

. Debug (such as gdb). For more information, see http://sources.redhat.com/gdb/.

Tip: Cygwin contains these utilities for a Windows environment. For more information, see http://www.
cygwin.com.

To test if cygwin wasinstalled correctly open a command prompt and type g++ or make.
The following error message means that no make isinstalled or your path is not configured correctly.

'g++'" (or 'make') is not recognized as an internal or external
conmmand, operable programor batch file

To check your path open acommand prompt and type PATH. Make sure that the path to your build
utility is defined (example PATH=c: \ cygw n\ bi n).

Related reference

CDT Home

i Copyright IBM Corporation and others 2000, 2004,

http://gcc.gnu.org/
http://sources.redhat.com/gdb/
http://www.cygwin.com/
http://www.cygwin.com/

What's new in the CDT?

— —

What'sNew in 2.0

Enhanced Performance

Builds can now be performed in the background.
Searches can now be performed in the background.
Automatic Project Settings Discovery

Automatically generate project defines and include paths settings from the C/C++ > New M ake
Projects > Discovery Options project settings.

C/C++ File Types

Define specific files, especially C++ headers without extensions, using the C/C++ File Types global
preferences or project property.

Multiple Architecture Project Support

Building from multiple binary formats? Choose the appropriate formats using the Binary Par ser project
option.

Editor Hyperlink Naviagation

Enable the editor hyperlink navigation and then you can use Ctrl+click to jump to the declaration of an
item on the C/C++ editor.

Indexer Error Markers

Enable C/C++ indexing and indexer error reporting in the C/C++ Indexer properties. This helps identify
projects missing path configuration information.

Rename Refactoring Support

Use the Outline or the C/C++ Editor Refactor > Rename context menu to refactor class & type names,
methods, function & member names.

Open Type

Use Open Type to open up the declaration of C/C++ classes, structures, unions, typedefs, enumerations
and namespaces.

Automatic Refresh

Configure the default behavior of the automatic retrieval of shared library and register information in the
C/C++ debugger.

Improved Managed Make

Y ou can now set the compiler command for managed projects.

Improved Standard Make

Standard Make now parses response from Make command to populate paths and symbols.
Support for GNU

Now supports some of the GNU extensions to the ANSI specification.

Improved View and Browsing Features

Y ou can now open Include files from the Outline View.

Y ou can now perform selection searches from the C/C++ Editor

Improved Search

Search now supports external files referenced using #i ncl ude.

Makefile Outline View
Y ou can now browse the structure of your Makefile in Outline View.
Content Assist Enhancements

Content Assist now produces proposals from classes and structure members, local & global variables,
pre-processor defines, pre-processor commands.

Content Assist now supports C++.

What'sNew in 1.2

Find out what'snew in CDT 1.2.

C/C++ Search

Y ou can search the projectsin your workspace for references to, declarations or definitions of, particular
elements. Only header files referenced by a source file in your workspace are included in a search.

Build

Managed build
Y ou can now create a Managed build and have makefiles generated for you.
Error parser

The error parsers are now extension-points that can contributed by other plug-ins. The error parsers are
used to detect errors or warnings or informational messages from compilers, linkers, etc... during a build.

New Global preferences for all Standard Make Project properties

Make builder options

Support changing/enabling default make targets for each workbench build type. New default build
location setting.

Make project options

Y ou can now make changes the Error Parser Configuration. Y ou can change the order in which error
parsers are applied or disable them entirely.

Y ou can also specify which paths to include during a Make and customize preprocessor symbols to
ensure proper indexing and search capabilities.

Notes:

There are anumber of "build error parsers' (the things that turn compiler error messages into objects
that we can put into the error lists). If one parser cannot figure out what the message means, then the
system moves to the next one in the list.

Make target
Make targets now support Stop on error build option and ability to change the default build command.
New Standard Make projects

Old Standard Make projects will be automatically updated to support the new options. If update is
declined, then selecting Update Old Make project... from the context menu of the project will update the
project to a new Standard Make project.

Debug

Formatting of variables and expressions

Y ou can now select the number system (natural, decimal, hexadecimal) used to display variables and
expressions.

Variable view, detail pane

In the Variable view, adetail pane has been added to let you see the value of a selected variable. Thisis
practical when looking at a string (char *).

Casting of variables, expressions and registers

In the Variable view, avariable can be cast to adifferent type or be restored to its original type. Also, a
pointer can be cast to an array type.

Debug disable variable query
The value of variables are queried at every step.

This can be time-consuming on certain embedded targets. The automatic query of variables can be
disabled. Manual queries are now an option.

Source location

A new source locator in the Run/Debug dialog box makes it possible to add directories to search,
mapping, and the order of the search.

GDB/MI new shared library launch pane

For GDB/MI code, two new actions are added in the launch view, stop-on-solib and auto-load-symbols.
Stop-on-solib will force the debugger to stop on any shared library events. Auto load will load the
symbols for any shared library.

GDB/MI improvements in display of arrays

Arrays are now separated into ranges, to limit the possibility of atimeout on large arrays.

What's new for previous releases

Y ou can keep track of previous release-specific developmentsin the CDT.

For more information, see http://www.eclipse.org/cdt/ > CDT Project Management/Plans. The
Official CDT Plans section lists previous rel eases.

£ Copyright IBM Corporation and others 2000, 2004,

http://www.eclipse.org/cdt/

Getting Started

How to bring C/C++ source into Eclipse
Updating the CDT

Related reference

CDT Home

i Copyright IBM Corporation and others 2000, 2004,

How to bring C/C++ source files into Eclipse

A common scenario that you may encounter when starting to use the CDT, is determining how to bring
existing C/C++ source filesinto Eclipse. There are a number of ways to do this. The scenarios described
below are recommended approaches.

Create a project from CVS

If your existing source tree is managed in CV'S, you can use the CV S Repository perspective to
"Checkout As..." any folder in the repository. The first time you "Checkout As...", the New Project
wizard is launched and you need to create a C or C++ project for the folder. For more information, see
Creating a project and Working with C/C++ project files.

A CVS checkout of the project into the project's location occurs. It is recommended that you eventually
add and commit the CDT project files back into CVS. The CDT project filesinclude .project, .cdtproject
and .cdtbuild (for Managed Build projects) and are located at the root folder of each CDT project.

Create new projects from existing source roots

If your resource code is not managed in CV S but is available from the file system, then you need to
perform two steps:

1. Identify a"root folder" of your source code tree.
2. Create anew C/C++ project using the New Project Wizard, and specify the "root folder" as a non-
default location of the new project.

Typically existing projects will have their own makefiles, so you should create a new Standard Make C/
C++ project. For more information see Creating a project and Working with C/C++ project files.

To help you to identify aroot folder for your project, consider the following guidelines:

. al source code for the project is available on or beneath the root folder

. thebuild results are also produced in or beneath the root folder

. thereis often amakefilein the root folder. In complex projects, the makefile in the root folder
calls other makefilesin other directories to produce the build results.

. external header filesand library files do not need to be in or beneath the root folder.

The resources for the project are maintained in the remote location specified, not in the workspace folder
for Eclipse. However, your existing folder structure is displayed in the C/C++ Projects view. Meta data

for the project, such as the index for the project and the link to the existing source, is stored in the
metadata directory in the workspace folder. For more information on the workspace folder, see
Workbench User Guide > Tasks> Upgrading Eclipse.

Once you create a CDT project, you cannot easily move it or redefine its root folders. If you need to, you
can delete the CDT project (without deleting its contents) and then recreate it specifying a different non-
default location.

Import your C/C++ source file system

Another approach would be to create a C/C++ Project and then import your existing file system. For
more information, see Workbench User Guide > Tasks > Importing > Importing resour ces from the
file system.

This approach copies the files from your file system to an Eclipse Workbench project or folder. Y our
original source files remain unchanged and it is the copies of the files that will be edited, built and
debugged using the CDT. When you have successfully imported your existing file system, the folder
structure is displayed in the C/C++ Projects view. Again, you should identify an appropriate "root
folder" to import from.

Tip:

. Importing your existing file system can consume significant disk space depending on the size of
your files.

. Your files may become detached from an existing source control system that previously
referenced the original file location such as a ClearCase view.

Related concepts
Overview of the CDT
CDT Projects

Related tasks
Working with C/C++ project files

Related reference
Project properties

& Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_proj_prop_pages.htm

Updating the CDT

The CDT can be updated directly from the workbench using your internet connection.

1. Click Help > Software Updates > Find and Install.

£~ LC/C++ - Eclipse Platform

File Edit Mavigate Search FRun Projeck ‘Window |He|p

Ji}v |@J@.’|§J#§vﬁv'wamme - -
(7} Help Contents
Tips and Tricks. ..

Zheat Sheets, .,

Software Lipdates

27 Find and Install...

About Eclipse Platform £ Manage Configuration. ..

2. In the Feature Updates window select Search for new features to install and click Next.

Emstal x|

Feature Updates
Chaoose the way you want ko search For features to install (o _| ‘

" Search for updates of the currently installed features

¥ Search For new Features to install

= Back Mext = Fimish Cancel

3. If you have not updated previously, you will have to enter the location of the CDT Install site. Click the Add
Update Site... button.

Emstal x|

Update sites to yisit
Select update sites ko wisit while looking For new features, '\i’_| ‘
-
.\‘_)l

Sites to include in search:

= ‘-‘rﬂ Eclipse.org update site add Update Site. ..

add Local Site. ..

add Archived Site. ..

Edit...
Eemove
¥ Ignore features not applicable to this environment
< Back MHext = | Firish | Cancel |

4. In the New Update Site dialog box, enter a name and the URL for the update site in the spaces provided.

£ New Update Site X

Mame: | CDT 2.0

IIRL: Ihttp:,I',I'update.eclipse.u:urg,l'I:n:n:nIs,l'n:dt,l'updates,l'huilds,l'z.I:I

(0] 4 Zancel

5. Select the update site you just created by clicking the appropriate checkbox and click Next.

Emstal x|

Update sites to yisit
Select update sites ko wisit while looking For new features, u, _| ‘
- -
x__)l

Sites to include in search:

- %l DT 2.0 add Update Site. .
= %EI Eclipse.org update site

add Local Site. ..

add Archived Site. ..

Edit. ..

Eemawve

¥ Ignore features not applicable to this environment

< Back, Mext = Fimish Cancel

6. A dialog box will appear showing the updates available from the update site, select each of the following
features, ensuring you have precisely the same version for each one:
o Eclipse C/C+ Development Tooling SDK
o Eclipse C/C+ Development Tools

Then click Next.

Emstal x|

Search Results
Select Features to install from the search result list, |Mf _| ‘
)
x_).‘
Select the Features ta install:
Feature Yersion | Praovider |:| Select all
O %Eclipse CMC++ Desvelapment Tools 2.0.0,200406150300 Eclipsz.org Dieselact Al
eselec
O %Eclipse CMC++ Deselapment Tools 2.0.0,2004061 60301 Eclipsz.org
[“*Eclipse C/C++ Development Tacls 2.0,0,200406170301 Eclipse.org Mare Infao
O @Eclipse CJC++ Development Tools 2.0,0,200406180301 Eclipse.org
Lt Eclipse C/C++ Development Tools 2,0.0,200406190301 Eclipse.org - Froperhies
i’ Etrior Details. .

Z of 62 selected,

[Filker Features included in other Features on the list

< Back, Mexk = Firish Zancel

7. You should now see the Eclipse.org Software User Agreement, you must accept the agreement to install the
CDT update. Do so by selecting | accept the terms in the license agreement and then click Next.

Emstall x|
Feature License I_[
J_)f

) 17th June, 2002
%Ecllpse ZJC++ Development Tools

Some of the Features have license agreements that wou need to accept before proceeding with the
inskallation.

L b
o
'\'\-._

ECLIPSE.ORG MAKES AVAILABLE SOFTWARE, DOCUMENTATION, INFOR.
OTHER MATERIALS FOR OPEM SOIURCE PROJECTS (COLLECTIVELY "CON
ISE OF THE CONTEMT IS GOWERMED BY THE TERMS AND COMDITIONS C
AEREEMEMT ANDJCR THE TERMS AND COMDITIONS OF LICEMNSE AGREE
MOTICES INDICATED QR REFEREMCED BELOYW, BY LSIMG THE COMTEMT
AGREE THAT ¥OUR. LSE OF THE CONTEMT 15 GOYERMED BY THIS AGREE -

1] | el | b

% I accept the terms in the license agreements

™ 1 do not accept the terms in the license agreements

< Back, Mexk = Firish Zancel

8. Now select the location you would like the updates installed, usually this is the directory where you installed
Eclipse, and click Finish.

Install Location

Choose the location where the Features will be installed,

Features to install; Available sites:
@:Eclipse /C++ Development Tooling SOU | = fe:/Program Filesfeclipse) Add Site. ..
%Eclipse ZC++ Development Tools 2.0.0 ;
Remove Sike
J | i
Fequired space; OKB
Free space: 2070677 2KE
< Back Mext = Finish Zancel

9. You will now start downloading the CDT components. You will have to verify that you want the features

installed by clicking Install for each feature you selected.

Jar ¥Yerification

Feature verification

15, \Warning: You are about to inskall an unsigned Feature,

o
& /Jl
YWarning: This Feature has not been digitally signed.
The provider of this Feature cannat be verified.
Feature name: Eclipse C/C++ Development Tooling SDK
Feature Identifier: org.eclipse.cdt.sdk_2.0.0.200406190301
Praovwider: Eclipse.org
File Identifier: org.eclipse.cdt.sdk_Z.0.0.200406190301
Inskall iZancel

10. You will now have to restart Eclipse, select Yes to complete the update.

£ Install/Update

Yo will need to reskark the workbench For the changes to take effect, Wiould

x,_f}) you like ko reskart nowe?

Yes

Mo

X

Related concepts
CDT Overview
C/C++ Development perspective

© Copyright IBM Corporatien and others 2000, 2004,

Concepts

Provides background information for CDT components, tasks and objectives.

CDT Overview
CDT Projects
Perspectives available to C/C++ developers
Viewsin the C/C++ perspective
Coding aids
Comments
Content Assist
Templates
Editing C/C++ Files
C/C++ editor
C++
Makefile
Navigation aids
Outline View
Project File views

Make Targets View
Open declaration

Open Type

Class Browser

Heirarchy View
Build

Building C/C++ Projects

Manage Build Extensibility Document
Debug

Breakpoints

Debug overview

Debug information

Error Parsing
Invoking Make
C/C++ search

C/C++ Indexer

C/C++ Indexer Problem Reporting

C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Searching External Files

& Copyright IBM Corperatien and others 2000, 2004,

CDT Overview

The C/C++ Development Toolkit (CDT) isaset of Eclipse plug-insthat provide C and C++ extensions
to the Eclipse workbench. For more information about Eclipse, see Workbench User Guide >
Concepts > Workbench.

The CDT provides a C/C++ IDE that simplifies many of the same tools that you can use from the
command line. The CDT can also communicate with many external utilities and interpret their
responses, for example:

. Build (such as make).
. Compile (such as gcc). For more information, see http://gcc.gnu.org.

. Debug (such as gdb). For more information, see http://sources.redhat.com/gdb/.

Note: while make, gcc and gdb are the examples used in the documentation, virtually any similar set of
tools or utilities could be used.

The CDT opens as the C/C++ perspective of the Eclipse workbench. The C/C++ perspective consists of
an editor and the following views:

C/C++ Projects
Shows your C/C++ projects and files.It operates in much the same way as the Navigator.
Console
Displays your program's output, as well as the output from your build and external tool chain.
Editor
The C/C++ editor view provides specialized features for editing C/C++ related files.
Make Targets
Enables you to select the make targets you want to build in your workspace.
Navigator
Shows all of the file system's files under your workspace directory.
Outline
Displays the structure of the file currently open in an editor.
Problems View
If you encounter any errors during a build they will be displayed in the Problems view.
Properties
Shows the attributes of the item currently selected in aview or an editor.
Search
Shows the results of searches for files or text.
Tasks
Liststasks that you want to keep track of, either as a schedule of things to do or a history of

http://gcc.gnu.org/
http://sources.redhat.com/gdb/

things that have been done.

For more information, see Workbench User Guide > Concepts > Per spectives.

CDT updates

The Install/Update wizard provides information about your current Eclipse installation and provides the
framework to manage your updates. For more information, see Wor kbench User Guide > Tasks >
Updating features with the update manager .

To view alist of the updates available for the tool sets that you installed, click Help > Softwar e Updates
> New Updates.

Additional information

For more information on the Eclipse CDT project, refer to http://www.eclipse.org/cdt/:

. CDT newsgroup: The place to ask questions about how to use the CDT.
. User FAQ: Provides answers to the most common questions about using the CDT.
. Developer Documentation: Provides feature and design specifications for building and extending

the CDT.
« CDT Community Webpage: Showcases plug-ins and tools developed by and for the CDT

Community. If you havetools or plug-ins that you would like to submit to the CDT Community
Page, use the CDT Development Mailing List or the Eclipse Tools CDT newsgroup.

License

The CDT is an open source project and is licensed under the Common Public License.

Related concepts
Working with existing code
What's new

Related reference
Views

£ Copyright IBM Corporation and others 2000, 2004,

http://www.eclipse.org/cdt/
news://www.eclipse.org/eclipse.tools.cdt
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/user/faq.html?cvsroot=Tools_Project
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/developer/docs.html?cvsroot=Tools_Project
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/cdt-home/community.html?cvsroot=Tools_Project
http://www.eclipse.org/legal/cpl-v05.html
file:///C|/test/docs/reference/cdt_o_views.htm

CDT projects

Before you can work in the CDT, you must create a project to store your source code, makefiles,
binaries, and related files. C/C++ projects are displayed in the C/C++ Projects view.

Tip: Nested projects are not supported. Each project must be organized as a discrete entity. Project
dependencies are supported by allowing a project to reference other projects that reside in your
workspace. For more information, see Selecting referenced projects.

For more information about projects and where they are stored, see:

« Workbench User Guide > Tasks > Resources
. Workbench User Guide > Tasks> Running Eclipse

Project types
Y ou can create a standard make C or C++ project or amanaged make C or C++ project.

Standard make C or C++ project

Y ou need to create a makefile in order to build your project or use an existing makefile.

Managed make C or C++ project

A managed make project generates the makefile for you automatically. In addition, the files module.dep
and module.mk are created for every project sub-directory. These files are required for your managed

make projects to build successfully.

Project conversion

Y ou can convert projects from C to C++ (or from C++ to C). If, for example, your requirements change
and you must convert an existing C project to C++, you can do this without recreating the project. The

CDT converts your project files and resolves any source control 1ssues.

A few notes about projects

. When you create afile within a project, arecord (local history) of every changeis created. For

more information about local history, see Workbench User Guide > Reference > User

interface information > Development environment > Local history.

. Spacesin projects and filenames can cause problems with some tools, such as the make utility or
the compiler.

. Becareful when you use only case to distinguish files and projects. UNIX-based operating
system file names are case sensitive, but Windows filenames are not. Therefore, Hello.c and hello.
c are separate filesin UNIX but overwrite each other in Windows.

For more information about projects, see Wor kbench User Guide > Concepts > Workbench >
Resour ces.

Related concepts
Project file views
How to bring C/C++ source into Eclipse

Related tasks
Working with C/C++ project files
Converting a C or C++ nature for a project

Related reference
Project properties
Views

& Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_proj_prop_pages.htm
file:///C|/test/docs/reference/cdt_o_views.htm

Perspectives available to C/C++ developers

A perspectiveis alayout of views (development tools) in the Workbench window. Each type of
perspective is a combination of views, menus, and toolbars that enable you to perform a particular task.
For example, the C/C++ perspective has views that are organized to help you develop C/C++ programs;
the Debug perspective has views that enable you to debug those programs.

Selecting / Opening Views:

. You can add views to a perspective. From the menu bar choose Window > Show View > Other
and select a new view from the Show View dialog.

. Toreset the current perspective to its original layout, from the menu bar choose Window > Reset
Per spective.

The C/C++ development tools contribute the following perspectives to the workbench:

C/C++ perspective views

This perspective is tuned for working with C/C++ projects. By default it consists of an editor area and
the following views:

. C/C++ Projects (the file navigator for C/C++ resources)
. Navigator (thefile navigator for all Eclipse resources)

. Console

. Properties

. Tasks

. Make Targets

. Outline

« Search

Debug perspective views

This perspective is tuned for debugging your C/C++ program. By default it includes an editor area and
the following views:

. Debug

. Variables

. Breakpoints
. Expressions

. Registers

. Memory

. Display (for use with JDT only)
. Outline

. Console

. Tasks

Other Perspectives

In addition to the perspectives named above and the Resource perspective (which you see when you first
start Eclipse), Eclipse aso has perspectives that are tuned to other types of development:

. Java

. JavaBrowsing

. Plug-in Development.

. CVS Repository Exploring

Related concepts
Views in the C/C++ perspective
Debug Concepts

Related tasks
Adding breakpoints

Related reference
Console view

@ Copyright Red Hat 2003, 2004,
£} Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/reference/cdt_u_console_view.htm

Views in the C/C++ perspective

The C/C++ views are panels that help you perform the tasks involved in creating C/C++ programs. The
C/C++ perspective displays these panelsin a single Eclipse window.

Changing Views:

« You can add views to a perspective. From the menu bar choose Window > Show View > Other
and select a new view from the Show View dialog.

. Toreset the current perspective to its original layout, from the menu bar choose Window > Reset
Per spective.

The following views are commonly used in the C/C++ perspective:

C/C++ Projects
Displays, in atree structure, only elements relevant to C and C++ projects.
Console
Displays your program's output, as well as the output from your build tools.
Editor
The C/C++ editor view provides specialized features for editing C/C++ related files.
Make Targets
Enables you to select the make targets you want to build in your workspace.
Navigator
Shows all of the file system's files under your workspace directory.
Outline
Displays the structure of the file currently open in an editor.
Problems View
If you encounter any errors during a build they will be displayed in the Problems view.
Properties
Shows the attributes of the item currently selected in aview or an editor.
Search
Shows the results of searchesfor files or text.
Tasks
Lists tasks that want to keep track of, either as a schedule of thingsto do or a history of things
that have been done.

Related concepts
CDT Overview
C/C++ perspectives

Related reference
Views

& Copyright Red Hat 2003, 2004,
€ Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/reference/cdt_o_views.htm

Coding aids
This section provides information on code entry aids.

Comments
Content Assist
Templates

& Copyright IBM Corporation and others 2000, 2004,

Comments

Comments are linesin a source file that have been marked to be ignored by the compiler. Two styles of
comments are supported by current C/C++ compilers:

. /* text */
. /] text

Comment

Y ou can quickly comment out one or more lines of code by inserting the leading characters/ / at the
beginning of the line. To do so, select the line (or lines) of code you want to comment out and press
CTRL+/ (dash).

Uncomment
To uncomment select the line (or lines) of code, and press CTRL +\ (backslash).

Tip: The characters/ * */ onlinesthat are aready commented out, are not affected when you
comment and uncomment code.

Multiline comment

Y ou can use the Content Assist feature to insert a multi-line comment before afunction. Typecom
+Ctr| +Space, and the following code is entered at the cursor location:

/*

* aut hor userid

*

* To change this generated comment edit the tenplate variable
"coment " :

* W ndow>Pr ef er ences>C>Tenpl at es.

*/

To change the default comment click Window > Preferences > C > Templates. For more information
see the Content Assist section.

Related concepts

Content Assist and code completion

Related tasks
Customizing the C++ editor
Commenting out code

Related reference
C/C++ editor, code templates and search preferences

@ Copyright Red Hat 2003, 2004,
£} Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/reference/cdt_o_ceditor_pref.htm

Content Assist

Content Assist isa set of tools built into the CDT that can reduce the number of keystrokes you must type to create your code.
The Content Assist plug-in consists of several components that forecast what a devel oper will type, based on the current
context, scope, and prefix.

Code completion

Content assist provides code completion anywhere in the document. For the current project alist is displayed of the elements
that begin with the letter combination you entered, and the relevance of each proposal is determined in the following order:

. Fields

. Variables

. Methods

. Functions

. Classes

. Structs

. Unions

. Namespaces
. Enumerations

Y ou trigger the Code completion feature when you call Content Assist (such aswhen you type Ct r | +Space), but it is auto-

activated when you type".", "->" or "::".

 B2vncon N 5)
<]

E:-cl.l

2 areal) double
2 getColord) string
exl. g getSize!) double
2 print(} woid
circ g seb(void

exl.

EXZ . @ setColoristring) void

2 setSizefdouble) void
EXZ. @ rusquarel) |
Xz .

Y ou can view the signature of each item on the list in a pop-up by pointing to it. Y ou can then select an item in the list to
insert it directly into your code.

Code templates

Y ou can create and save code templates for frequently used sections of code, which will be inserted according to scope. The
Content Assist feature also provides quick access to code templates.

When you enter aletter combination in the C/C++ editor, and type CTRL+SPACE (or right-click and click Content Assist), a
list of code elements and code templates that start with the letter combination that you typed is displayed.

Y ou can then select a code template from the list and it isinserted directly into your code.

H\ ol

square exl: :I
exl.printi():

cl
a denorm_indekerminate :I o1

® =& denorm_present while {condition);
S # DOMAIN

default
= delete
< do

double
= dynamic_cask
= % do - do while skaternent -

For example, the code templatedo whi | e st at enent contains the following code:

=l0lx]

Mame: I do Conkexk: IC Funckion j

Description: I do while skaternent

do | :I

${oursor!

v while (§{condition}): -
] 3
Insert Yariable.. |

Patkerm:

8] 4 Zancel

When you select the do code template from the list, you insert the following code:

do {
} while (condition);

If the completion engine finds only one proposal in your templates, that proposal isinserted at the current cursor position. For
example if you create anew .cpp file and type mai +CTRL+SPACE the following code isinserted at the cursor location:

i nt
mai n(i nt argc, char **argv) {

}

No Completions

If you invoke Content Assist, but no completions are found a message will be displayed on the status to inform you that the
Content Assist parser has timed out.

| | Mo completions awailable,

Related concepts

Code entry

Related tasks

Using Content Assist

Creating and editing code templates
Importing and exporting code templates

Related reference
C/C++ perspective icons

12} Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_u_icons.htm

Templates

Templates are sections of code that occur frequently enough that you would like to be able to insert them
with afew keystrokes. This function is known as Content Assist; the sections of code that are inserted
are known as templates.

To input an existing Content Assist template into afile, such as one for an if statement, type the initial
character ("i " in this case), then press Ctrl+Space. The templates that begin with that character appear.
Double-click on atemplate to insert it into afile.

Y ou can edit existing Code/Content Assist templates or create new ones. From the menu bar choose
Window > Preferences > C/C++ > Code Templates.

Related concepts

CDT Overview

Related tasks

Creating and editing code templates
Using templates

| mporting and exporting code templates

Related reference

Edit menu

Content Assist page, Preferences window
Code Templates page, Preferences window

@& Copyright Red Hat 2003, 2004,
) Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_u_menu_edit.htm
file:///C|/test/docs/reference/cdt_u_c_editor_con_assist.htm
file:///C|/test/docs/reference/cdt_u_code_temp.htm

Editing C/C++ Files

This section provides information on editing C/C++ files.
C/C++ editor

C++
Makefile

£} Copyright IBM Corporation and othars 2000, 2004,

C/C++ editor

The CDT provides an editor that gives you specific support for editing C/C++ code. This C/C++ editor
isinvoked automatically when you edit a C/C++ sourcefile.

The C/C++ editor includes the following features:
« Syntax highlighting
. Content/code assist

. Integrated debugging features

Y ou can customize some of the operation of the Editor view from the Window > Preferences > C/C++
> Editor preferences dialog.

Related concepts

CDT Overview

Related tasks
Using Content Assist

Related reference

C/C++ editor key binding actions
C/C++ editor preferences
Outline view for C/C++

Views and editors

@ Copyright Red Hat 2003, 2004,
£ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_u_editor_key_bind.htm
file:///C|/test/docs/reference/cdt_o_ceditor_pref.htm
file:///C|/test/docs/reference/cdt_u_outline_view.htm
file:///C|/test/docs/reference/cdt_o_views.htm

Makefile

A makefileisatext filethat is referenced by the make command that describes the building of targets,
and contains information such as source-level dependencies and build-order dependencies.

The CDT can generate a makefile for you, such projects are called Managed M ake projects. Some
projects, known as Standard Make projects, alow you to define your own makefile.

Sample Makefile

A sanpl e Makefile

This Makefil e denonstrates and expl ai ns

Make Macros, Macro Expansi ons,

Rul es, Targets, Dependencies, Commands, Goals
Artificial Targets, Pattern Rul e, Dependency Rul e.

H HHH

Comments start with a # and go to the end of the I|ine.

Here is a sinple Make Macro.
LI NK_ TARGET = test nme. exe

Here is a Make Macro that uses the backslash to extend to nultiple
| i nes.

This allows quick nodification of nore object files.

oBJS =\

Testl.0 \

Test2.0 \

Mai n. o

Here is a Make Macro defined by two Macro Expansi ons.

A Macro Expansion may be treated as a textual replacenent of the
Make Macr o.

Macro Expansions are introduced with $ and encl osed in

(par ent heses).

REBUI LDABLES = $(0BJS) $(LINK_TARGET)

Make Macros do not need to be defined before their Macro Expansi ons,
but they normally should be defined before they appear in any Rul es.
Consequent|ly Make Macros often appear first in a Makefile.

Here is a sinple Rule (used for "cleaning"” your build environnent).
It has a Target naned "clean" (left of the colon ":" on the first
i ne),
no Dependencies (right of the colon),
and two Commands (indented by tabs on the lines that follow).
The space before the colon is not required but added here for
clarity.
cl ean :

rm -f $(REBU LDABLES)

echo Cl ean done

There are two standard Targets your Makefile should probably have:
"all" and "cl ean", because they are often command-|ine Goal s.

Also, these are both typically Artificial Targets, because they
don't typically

correspond to real files naned "all" or "clean".

The rule for "all" is used to increnentally build your system
It does this by expressing a dependency on the results of that
system

which in turn have their own rules and dependenci es.

all : $(LINK _TARCET)

echo Al done

There is no required order to the list of rules as they appear in
t he Makefil e.

Make will build its own dependency tree and only execute each rule
only once

its dependencies' rules have been executed successfully.

Here is a Rule that uses sone built-in Make Macros in its comrmand:
$@expands to the rule's target, in this case "test_ne. exe".
$" expands to the rule's dependencies, in this case the three files
main.o, testl.o, and test2.o0.
$(LI NK_TARGET) : $(0BJIS

g++ -g -0 $@ %"

Here is a Pattern Rule, often used for conpile-Iline.

It says howto create a file with a .o suffix, given a file with a .
cpp suffix.

The rule's conmmand uses sone built-in Make Macros:

$@for the pattern-matched target

$lt; for the pattern-matched dependency

%o : %cpp
g++ -g -0 $@-c $<

These are Dependency Rul es, which are rules w thout any comrmand.
Dependency Rules indicate that if any file to the right of the
col on changes,

the target to the left of the colon should be considered out-of -
dat e.

The conmmands for making an out-of-date target up-to-date nay be
found el sewhere

(in this case, by the Pattern Rul e above).

Dependency Rules are often used to capture header file dependenci es.
Main.o : Main.h Testl.h Test2.h

Testl.0 : Testl.h Test2.h

Test2.0 : Test2.h

Alternatively to manual |y capturing dependenci es, several automated
dependency generators exist. Here is one possibility (commented
out)...

%dep : %cpp

g++ -M $(FLAGS) $< > $@

include $(0OBJS:. o=. dep)

Frequently Asked Questions:
Y our Console view can be very useful for debugging a build.

Q1. My Consoleview says" Error | aunchi ng bui |l der" . What does that mean?

Error launching builder (make -k clean all)
(Exec error:Launching failed)

Most probably, the build command (by default "make") is not on your path. Y ou can put it on your path
and restart Eclipse.

Y ou can also change the build command to something that is on your path. If you are using MinGW
tools to compile, you should replace the build command with "mingw32-make".

Q2. My Consoleview says"No rule to make target 'X ".

make -k clean all
make: *** No rule to nake target 'clean'.
make: *** No rule to nake target 'all'.

By default, the make program looks for a file most commonly called "Makefile" or "makefile”. If it
cannot find such afilein the working directory, or if that file is empty or the file does not contain rules
for the command line goals ("clean" and "all" in this case), it will normally fail with an error message
similar to those shown.

If you already have avalid Makefile, you may need to change the working directory of your build. The
default working directory for the build command is the project's root directory. Y ou can change this by
specifying an alternate Build Directory in the Make Project properties. Or, if your Makefile is named
something else (eg. bui | dFi | e. nk), you can specify the name by setting the default Build command
tomake -f buil dFil e. nk.

If you do not have avalid Makefile, create anew file named Makefile in the root directory. Y ou can
then add the contents of the sample Makefile (above), and modify it as appropriate.

Q3. My Consoleview says" m ssi ng separator".

make -k clean all
makefile: 12: *** m ssing separator. Stop.

The standard syntax of Makefiles dictates that every linein abuild rule must be preceded by a Tab
character. This Tab character is often accidentally replaced with spaces, and because both result in white-
space indentation, this problem is easily overlooked. In the sample provided, the error message can be
pinpointed to line 12 of the file "makefile"; to fix the problem, insert atab at the beginning of that line.

Q4. My Consoleview says" Target "all' not renade because of

errors".

make -k clean al

make: *** [clean] Error 255

rm-f Testl.o Test2.0 Main.o test_ ne.exe

g++ -g -0 Testl.o -c Testl.cpp

make: *** [Testl.o0] Error 255

make: *** [Test2.0] Error 255

make: *** [Main.o] Error 255

g++ -g -0 Test2.0 -c Test2.cpp

gt+ -g -0 Main.o -c Min.cpp

make: Target 'all' not remade because of errors.

Thelikely culprit hereisthat g++ is not on your Peath.

The Error 255 is produced by make as aresult of its command shell not being able to find a command
for aparticular rule.

Messages from the standard error stream (the lines saying Error 255) and standard output stream (all the
other lines) are merged in the Console view here.

Q5. What's with the -k flag?

The -k flag tells make to continue making other independent rules even when onerule fails. Thisis
helpful for build large projects.

Y ou can remove the -k flag by turning on Project Properties > C/C++ Make Project > Make Builder >
Stop on first build error

Q6. My Console view looks like:

m ngw32- make cl ean all

process begin: CreateProcess((null), rm-f Testl.o Test2.0 Main.o
test ne.exe, ...) failed.

make (e=2): The system cannot find the file specified.

m ngw32- make: *** [clean] Error 2
rm-f Testl.o Test2.0 Main.o test ne.exe

This means that mingw32-make was unable to find the utility "rm". Unfortunately, MinGW does not
come with "rm". To correct this, replace the clean rule in your Makefile with:

cl ean :
-del $(REBUI LDABLES)
echo C ean done

The leading minus sign tells make to consider the clean rule to be successful even if the del command
returns failure. This may be acceptable since the del command will fall if the specified files to be deleted
do not exist yet (or anymore).

i Copyright IBM Corporation and others 2000, 2004,

Navigation Aids

This section provides information on navigating through the C/C++ Perspective.

Outline View
Project File views

Make Targets View
C/C++ search

Open declarations
Open Type
Class Browser

& Copyright IBM Corporation and others 2000, 2004,

Outline view

The Outline view displays an outline of a structured C/C++ file that is currently open in the editor area, by listing the structural

elements.

x@ *main. cpp ﬂE circle.h &2 @ shapezd.h @ shape3d.h @ shape.h @ cube.h EP
class circle:public shapezZd | _:J
private:

double size;
String color:
public:
A% Constructors [/ Destructors
circle():
rvirtual ~circle():
% Methods */f
void setiize (double =) i1size = =2 < 0 27 0 s
double [FEdRE{S () ireturn size;}:; |
void setColor (string o) icolor = or);
string getColor () {return color:};
double areali) {return (pi ¥ powisize,Z2)):}:
roid print (] { mout << "Circle:™

a

<< "ynhtRadius

=" 2 ¥
>

m\fﬂake Tar...

:E\'
1% @ o

eeecoeoe0ec

shapezd.h
circle

N

size : double
color ¢ skring

circlel)

coriviclied)
setSizeldouble) ; woid
getSizel) : double
setColoristring) ¢ woid
getColor() : string
areal) + double
prinkd) ¢ woid

set() : void

The Outline view shows the following elementsin the source file in the order in which they occur:

Class
Namespace
Include

Enum
Enumerator
Field private
Field protected
Field public
Include

Method private
Method protected
Method public
Struct

Typedef

Union

Variable
Function

Macro Definition

Y ou can also sort the list al phabetically. When you select an element in the Outline view, the C/C++ editor highlights both the
selected item and the marker bar (Ieft margin). For example, to move to the start of main() in the C/C++ editor, click mai n() inthe
Outline view.

For more information about the marker bar, see Workbench User Guide > Reference > User interface information > Views and
editors> Editor area.

Filtering the Outline View

Y ou can filter the Outline view by choosing to display or hide the following items:
. Fields
. Static members
. Non-public members

Y ou can select an element in the Outline view, and perform the following actions:

. Open the C/C++ Search window box. The Search string box is populated and the element type is sel ected.
. Complete atext-based search, of aworkspace or a specified working set for the selected element.

. Open asdected .hfilein the editor.

. Rename Refactor

Icons

@ |HideFields

w |Hide Static Members

Hide Non-Public
Members

1%, |Sort

For more information about the Eclipse workbench, see Workbench User Guide > Tasks > Upgrading Eclipse.

For more information about Working sets, see Workbench User Guide > Concepts > Working sets.

Related concepts

Comments

Content Assist and code compl etion
C/C++ search

Open Declarations

Related tasks
Displaying C/C++ file components in the C/C++ Projects view
Searching for C/C++ elements

Related reference
Outline view

© Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_u_outline_view.htm

Project file views

Projects files and elements are displayed in the C/C++ Projects view and in the Navigator view.

C/C++ Projects view

Displays, in atree structure, only elements relevant to C and C++ projects. In this view you can do the
following:

. Browse the elements of C/C++ sourcefiles

. Build Targets

. Create new projects, classes, files, or folders

. Import or Export files and projects

. Manage existing files (cut, paste, delete, move or rename)
. Openfilesin the editor view

. Open projects in a new window

. Refactor

. Restore deleted files from local history

. Search

Filesthat you select in the C/C++ Projects view affect the information that is displayed in other views.

.
ETTTIIE, Navigstor| = O

F-T= HeloWorld

= €p EBinaries

ﬁ hiello,exe - [xG6le]
Includes

B

------ = iostream

...... =1 string

b @ main) ¢ ink

ﬁ hiella.exe - [xGale]

main.o - [xE6lE]

------ [makefile

]h:% Shapes

Eﬂ""TEE‘ Test

-l

X1

Navigator view

The Navigator view provides a hierarchical view of all the resources in the workbench, not just your C/C
++ resources. From this view, you can open filesfor editing or select resources for operations such as
exporting.

Right-click any resource in the Navigator view to open a pop-up menu from which you can perform
operations such as copy, move, create new resources, compare resources, or perform team operations.
For a description of what each menu item does, select an item and press F1.

By default, the Navigator view isincluded in the Resources perspective. To add it to the current
perspective, click Window > Show View > Navigator .

.
mq’ C++ Projects — O

== T
= .cdeproject
Jproject
hiello, exe
mairn. cpp
mairn. o

e

----- [makefile
- To% Test

=

_____ 5

Toolbar icons

Icon Name

Description

Minimize Console.

e |

Minimizesthe view.

H |[Maximize Console

Maximizes the view.

Back

This command displays the hierarchy that was displayed immediately prior
to the current display. For example, if you Go Into aresource, then the
Back command in the resulting display returns the view to the same
hierarchy from which you activated the Go Into command. The hover help
for this button tells you where it will take you. This command is similar to
the Back button in aweb browser.

Forward

This command displays the hierarchy that was displayed immediately after
the current display. For example, if you've just selected the Back
command, then selecting the Forward command in the resulting display
returns the view to the same hierarchy from which you activated the Back
command. The hover help for this button tells you where it will take you.
This command is similar to the Forward button in aweb browser.

Up

This command displays the hierarchy of the parent of the current highest
level resource. The hover help for this button tells you where it will take
youl.

Collapse All

This command collapses the tree expansion state of all resourcesin the
view.

<= |Link with Editor |This command toggles whether the Navigator view selection islinked to
the active editor. When this option is selected, changing the active editor
will automatically update the Navigator selection to the resource being
edited.

+ |Menu Click the black upside-down triangle icon to open a menu of items specific
to the Navigator view.

Select Working Set
Opensthe Select Working Set dialog to allow selecting aworking
set for the Navigator view.

Deselect Working Set
Deselects the current working set.

Edit Active Working Set
Opensthe Edit Working Set dialog to allow changing the current

working set.

Sort
This command sorts the resources in the Navigator view according
to the selected schema:

o By Name: Resources are sorted al phabetically, according to
the full name of the resource (e.g., A.TXT, then B.DOC,
then CHTML, etc.)

o By Type Resources are sorted alphabetically by file type/
extension (e.g., al DOC files, then all HTML files, then all
TXT files, etc.).

Filters

This command allows you to select filters to apply to the view so
that you can show or hide various resources as needed. File types
selected in the list will not be shown in the Navigator.

Link with Editor
See the toolbar item description above.

For information about the Navigator view toolbar and icons, see Workbench User Guide > Concepts >
Views > Navigator View.

For information about the pop up menu in the Navigator view, see Wor kbench User Guide >

Reference > User interfaceinformation > Views and Editors> Navigator View.

For information about the Working Sets, see Workbench User Guide > Concepts > Workbench >
Working sets.

Related concepts
CDT Projects
Working with existing code

Related tasks
Creating a project
Working with C/C++ project files

Related referenco
C/C++ perspective icons

£} Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/reference/cdt_u_icons.htm

Open declaration

Y ou can select an element name in your code and quickly navigate to its declaration.

Suarel=La

exl.pr Undo Ckrl+Z
Rewvert File
Cuk kel
iCopy iZkrl4iC
Paste Chrl+Y
Shift Right
Shift Left
iornrment kel
Uncorrment kel
iZonkent Assisk ikrl+Space
fdd Include U o e e

Shaow in CHC++ Projecks

Refactor F

iopen Declaration

Search For b

-I*I R T L
™ Resume At Line

:':5"'“ add Expression, ..

Save

Open declaration will attempt to navigate to the exact declaration of the selected element. Open
declaration requires your file to have the proper include paths set up to the declaration. If for any reason
open declaration cannot find the declaration, it will display the following message in the status line:

I | The operation is unawvailable on the current seleckion, Wy'ritable Smart Insert Q26

For more information see Adding Include paths and symbols.

Related concepts

CDT Projects
C/C++ search

Related tasks

Adding Include paths and symbols
Navigateto a C or C++ element's declaration
Searching for C/C++ elements

i Copyright IBM Corporation and others 2000, 2004,

Build

This section describes the build views and terminology.

Building C/C++ Projects
Manage Build Extensibility Document

£} Copyright IBM Corporation and othars 2000, 2004,

Building C/C++ projects

The CDT relies on an external make utility, such as GNU make, to build aproject. The CDT can
generate makefiles automatically when you create a Managed Make C project or a Managed Make C++
project. Y ou have the option of creating a Standard Make C project or a Standard Make C++ project and
providing the makefile yourself.

Required utilities
Y ou must install and configure the following utilities:

. Build (e.g. make).
. Compile (e.g. gco).
. Debug (e.g. gdb).

Note: while make, gcc and gdb are the examples used in the documentation, virtually any similar set of
tools or utilities could be used.

Tip: Cygwin contains these utilities (make, gcc and gdb) for a Windows environment, while running the
cygwin installation ensure gcc and make are selected, they are not installed by default. For more
information, see http://www.cygwin.com. Red Hat users, all you need to build your project isincluded
in the Red Hat Linux installation. For other operating systems please refer to your installation
documentation.

Build terminology
The CDT uses a number of terms to describe the scope of the build.
Build Project

Thisisan incrementa build (make al, assuming all is defined in your makefile). Only the components
affected by modified filesin that particular project are built.

Rebuild Project

Builds every file in the project whether or not afile has been modified since the last build. A rebuildisa
clean followed by a build.

http://www.cygwin.com/

For more information on builds, see:

. Workbench User Guide > Concepts> Workbench > Builds
. Workbench User Guide > Tasks> Building resour ces

Build-related information is displayed as follows:

. The Console view displays the output of the build tools.
. TheTasksview displaysalist of compiler errors and warnings related to your projects.
. Makefiletargets are displayed in the Make Targets view.

For more information about the Tasks view, see Wor kbench User Guide > Reference > User interface
information > Views and editors> Tasks view.

Getting a makefile

Y ou can either create a C/C++ project for which you supply the makefile or create a C/C++ project for
which the CDT generates makefiles automatically.

To create a new project, from the menu bar choose File > New > Project. In the dialog that appears.

. To create aproject for which you supply the makefile, select either Standard Make C project
or Standard Make C++ project.

. To create aproject for which the CDT supplies a basic makefile, select either Managed Make C
project or Managed Make C++ project.

Setting build preferences

Y ou can set build preferencesin Eclipse:

Build order
If certain projects must be built before others, you can set the build order. If your project refersto
another project, the CDT must build the other project first. To set the build order, from the menu
bar select Window > Preferences > Build Order.

When you set the build order, the CDT does not rebuild projects that depend on a project; you
must rebuild all projectsto ensure all changes are propagated.

Automatic save
Y ou can set the CDT to perform an automatic save of al modified resources when you perform a
manual build; from the menu bar, select Windows > Prefer ences > Wor kbench.By default, this
feature is enabled.

Controlling the building of your project

The C/C++ compiler that a project uses is controlled by the project's Properties setting. To view a
project's properties, right-click on the project and select Properties. In the dialog that appears, the C/C+
+ Standard M ake Project page enables you to control avariety of settings, including:

Build Setting
Controls whether the compiler will Stop On Erroror Keep Going On Error. Choosing K eep
Going On Error will force the compiler to attempt to build all referenced projects even if the
current project has errors.

Build Command
Controls which make is used.

Workbench Build Behavior
Controls which makefile target will be built depending on the scope of the build.

Viewing build information

Build-related information is displayed as follows:

. The Console view displays the output of the make utility.
. TheTasksview displaysalist of compiler errors and warnings related to your projects.
. Build actions display in the Make Tar gets view.

Related concepts
CDT Projects
Project file views

Related tasks

Building

2 Copyright Red Hat 2003, 2004,
& Copyright IBM Corporation and others 2000, 2004,

Managed Build System Extensibility
Document

his document describes the design of the managed build system and how to extend it. =
Author : Sean EVOY

Revision Date :10/21/2003 - Version: 0.1.0
Change History : 0.1.0 - Document Creation

Table of Contents

1 Introduction

1.1 Who Needs This Information

1.2 Managed Build System Overview

1.3 The Standard Build System
2 Build Model Grammar Elements

2.1 Model

2.2 Target

2.3 Tool

2.4 Option Category

2.5 Configuration

2.6 Tool Reference

2.7 Option

2.8 Option Reference

2.9 List Option Value

2.10 Enumerated Option Value
3 Ul Representation

3.1 New Project Wizard

3.2 Build Property Page
4 Makefile Generation

4.1 Main Makefile

4.2 Makefile Fragments

4.3 Dependency Makefile Fragments

4.4 Inter-Project Dependencies
5 Tutorial: An Example Tool Chain

5.1 Setting up your Environment

5.2 Creating your Plug-in Project

5.3 Creating the Extension

5.4 Adding a Target

5.5 Adding a Configuration

5.6 Adding a Tool

5.7 Testing the Target

5.8 Adding Tool Options

5.9 Taking the Next Step

mailto:sevoy@ca.ibm.com

1 Introduction

C and C++ developers are a diverse group. The tools they use, the processes they follow, and the level of support
they expect from their development environments vary widely. The CDT provides a framework for integrating those
tools into Eclipse and the managed build system is part of that framework. Understanding how the managed build
system works, and what steps are required to extend it is the focus of this document.

1.1 Who Needs This Information

The information in this document describes the design of the managed build system and discusses how to add new
build targets and tools to it through the ManagedBui | dI nf o extension point. It is intended for someone who
wants to understand how the managed build system works, or is interested in adding their own tool chain
specification to it.

The CDT comes configured to generate makefiles to build executables, static libraries, and shared libraries on
Cygwin, Linux, and Solaris using Gnu tools. If you are using the CDT on those platforms, have access to Gnu tools
and find the predefined targets sufficient for your needs, then you do not need to modify anything. Please feel free
to skip sections 2, 3, and 5 as they are primarily concerned with adding new tool chains to the build model.

If you are working with tools other than Gnu, or you wish to build for targets the CDT does not support out of the
box, then you have to decide whether you will provide your own makefile and use the standard builder, or add a
description of your target to the extension point and let the CDT generate the makefiles for your project.

If you choose to add your own tools to the managed build system, it is assumed that you are familiar with XML and
the Eclipse extension point mechanism. Having made the standard disclaimer, it should be said that the tutorial in
section 5 presents a cookbook approach to adding a new tool specification, so you can always jump right in and
refer to the online help in the Platform Plug-in Developer Guide if you get stuck.

1.2 Managed Build System Overview

The managed build system consists of several components that interact to build a project. At the core of the
managed build system is the build model. It is the central clearing house for all the build-related information that
internal and external clients require. There are three internal clients; the user interface components, a makefile
generator that is responsible for generating a correct makefile for a project when it is built, and the CDT parser.
The external clients are the end-user, who interacts with the build model through the user interface, and tool-chain
integrators who supply tool definitions to the build model. The diagram below shows the basic set of relationships
between these components.

Q

Build seftings file —p Userinterface /K

COT End-user

generalor

= CDT parser

Plug-in manifest

Toal Integrator

Figure 1 Managed build system Overview
1.2.1 External Users

From the perspective of the build model, there are two external users. The first is the end-user that interacts with
the build model through the Ul elements described in section 4. The Ul includes a new project wizard that asks the
build model about what tools have been defined for new projects. When the project has been created, the project
property page uses the information in the build model to populate its display. The user can change the information
associated with the tools for a project through the property page and the build model is responsible for saving
those changes between sessions. The second external user is the tool integrator who adds information about their
tool-chain to a plug-in manifest as described in the tutorial in Section 5. The tool-chain integrator is the primary
audience for this document.

1.2.2 Internal Users

There are three internal clients of the information in the managed build system. The first is the makefile generator
that creates a correct makefile for a project based on the tools and settings defined for the project in the build
system. The second is the built-in CDT parser that relies on the build system to tell it about the include paths and
defined preprocessor symbols for a given project so that it can properly parse a file. The third client is the Ul
component of the build system that queries the build model for the tools and options defined for a project to build
its display and store the user settings.

1.2.3 Tool Definitions and Settings Storage

A key feature of the managed build system is that it is extensible. Tool integrators can use the grammar, described
in Section 2, to add their own tools to the build system. The same grammar is used to save the settings that the
user overrides through the Ul between sessions.

1.3 The Standard Build System

There is also a standard build system supplied as part of the CDT framework that is unrelated to the managed
build system. The standard system provides a small set of tools to build a user’s projects. The user is expected to
supply a makefile which includes enough information to build their project. The Ul allows the user to switch
between targets defined in the makefile, like clean or all, and for the user to enter the information the parser
requires.

The decision to use the standard or managed build system is a trade-off. For users with an existing project that
already has a set of working makefiles, or for users that prefer to write their own makefile, the standard system
may be perfect. However, many users are uncomfortable writing makefiles, so the standard system may present a
barrier to adoption for them.

2 Build Model Grammar Elements

The managed build system defines a grammar to describe tool chain information. This information is used to store
invariant data, like the command line invocation for a specific compiler, for example. The build system also stores
user settings between sessions, like the level of debugging information that is needed for a particular build
configuration. The following section describes the format of the grammar and what the information is used for by
the build model.

2.1 Model

The figure below shows a UML model of schema elements.

+patrent B .‘:
+oonfiguration
0.1 ‘ 1
confizuration
+kaal
n,.* +toolFReference
0, .#
kool . kool Reference
+id
+optionCatezory 1
0. ¢ ’
] +oakezory
optionCategory
0.1
option +ophionReference
+
FOALEY .. f..*
0.1
. +id optionFeference
opkiom
1
Ophions defined by lists _ _
store their walues here, +115tE'F'h'3'1'1v31'-lE DOptions that are a
— 0. +enurmerated Dption Value single choice from a
e 0..* | list of choices store
listCiptionWalue __.r-777 7 | their values here,

enuroerabed OptionWalue |7

Figure 2 Managed build model elements

2.2 Target

In its current implementation, the target in the build model is confusing because it encompasses the responsibilities
of two distinct participants in a build. The first is the host target where the build tools are located. The information
that this type of target needs to managed are things like the command to start the make utility, to remove files, and
to invoke build tools. The second is the physical target that the build artifact is supposed to run on, which may or
may not be the same as the host target. This distinction will be clarified in the next iteration of the build model.

Targets can be arranged into hierarchies to promote the efficient sharing of tools and configurations. If you have
defined a target that should not be selected by the user, but is a root for other targets, it may be declared abstract
by setting the isAbstract attribute to t r ue. Abstract targets do not appear in the Ul. You must provide a unique
identifier for the target in the id attribute. The build model uses this information to distinguish between the target
definitions it finds. Children of the abstract target will have the same tools and configurations the abstract target

has. For these children to function properly, their parent attribute must contain the unique identifier of the parent
target.

A concrete target must have at least one configuration defined for it. A target must also define (or inherit) a set of
tool definitions that work together to produce the build goal as an output. You must also provide a meaningful name
that will be displayed to the user in the Ul and new project wizards.

The target defines the command needed to invoke the make utility in the makeCommand attribute. Any special
flags that need to be passed to the make utility are defined in the makeFlags attribute. The command to remove
files on the host machine is defined in the cleanCommand attribute.

Typically a build target will only be valid on a limited subset of operating systems. For example, it does not make
much sense to allow a user to create a Solaris shared library project if they are running Eclipse and the CDT on

Windows. You can specify the operating systems that the target is restricted to as a comma-separated list in the
osList attribute. At the moment, you can specify wi n32, | i nux and sol ari s as the filters.

The CDT offers a facility for parsing binary files if it knows which output format the build artifact has been produced
with. The binaryParser attribute must contain the id of the appropriate parser if you want build artifacts of the target
to be parsed in the workspace. There are currently two defined binary parsers; or g. ecl i pse. cdt. cor e. PE for
Windows artifacts, and or g. ecl i pse. cdt . cor e. ELF for Linux and Solaris. This information is used to set the
parser when a project is created and is not something the user can change through the Ul.

The target is responsible for maintaining the name of the final build goal. The user selects the name of the build
target in the Ul, and the build model maintains it in the artifactName attribute. The implementer of a tool chain
should not specify this in the plug-in manifest. However, the default extension for the target can be specified using
the defaultExtension attribute.

2.2.1 Schema
Attribute Description Required
artifactName The name of the build goal defined by the target. This is set by no

the user through the Ul and stored in the build model through this

attribute.
binaryParser The id of the appropriate parser for the build artifact. yes
cleanCommand The command to remove files on the build machine. You must yes

define this value if the target does not have a parent, or it is not
defined in the parent.

defaultExtension The extension the build goal will have, for example ‘.exe’ or .so’. |no

id A unique identifier that the model manager will use to keep track |yes
of this specific target.

isAbstract Flags the target as abstract. An abstract target can not be yes
selected by the user in the Ul, but children of the target will inherit
its tools and configurations.

isTest A target can be flagged for test purposes only. It can be yes
manipulated programmatically, in JUnit tests for example, but not
selected by the user in the UI.

makeCommand The command to invoke the make utility. You must define this yes
\value if the target does not have a parent, or it is not defined in
the parent.

makeFlags The default flags passed to the make utility on the command line. |yes

name The name for the target that is displayed to the user in the Ul. yes

osList A comma-separated list of operating systems that the target is no
\valid for.

parent The unique ID of the parent of the target. no

2.2.2 Example

The example below shows a target definition called ‘Executable’. Tool and configuration information will be added
to our definition is later sections.

<extension ..>
<target
akeF lags="-k"
izTezst="falze"
cleanCommatd="rm —-rf£™
name="Executable™
defaultExtension=".exe™
izibhztract="falzse"
makeCommand= "nake
binarvParser="org.eclipse.cdt.core.FE™
ocs2Llist=ywin3Z™
id=Mexample.target . executabhle™ >
<configuration >
<tool =
</ targetr
<fextension:

2.3 Tool

A tool represents some sort of executable component that can take a set of inputs and produce a set of outputs. A
tool must have a unique id for the build model, and a name that is displayed to a user through the UI.

Certain tools logically belong to certain kinds of projects. For example, the Gnu compiler is invoked differently for C
and C++ source files. You can specify a filter for a tool based on the nature of a project using the natureFilter
attribute. When a new C project is created, a cnat ur e is added to it. New C++ projects have both a cnat ur e and
ccnat ur e. The build model interprets the filter as follows. If you specify a cnat ur e filter, then the tool will only be
displayed if the project has a cnat ur e and does not have a ccnat ur e. If you specify a ccnat ur e filter, then the
tool will be displayed if the project has a ccnat ur e. The default if no filter is specified is to display the tool for all
projects.

Tools can be added to the plug-in manifest as part of a target or as a stand-alone specification. Tools defined as
part of a target will be available for projects that are created to build for the target or any child of the target in which
the tool is defined. If you want targets o use a tool that is not specified as belonging to it, you must create a
reference to the tool in the target specification. Please refer to section 2.6 for a description of how to use tool
references in your plug-in manifest.

Tools can define a set of input file extensions in the sources attribute. This indicates that a tool will build for those
and only those file types. Similarly, a tool might specify a set of file extensions that they will produce in the outputs
attributes.

Each tool specifies a command that will be placed in the makefile during the makefile generation stage of building.
Two optional flags control how the command is generated. If the tool requires a special output flag, such as - o for
a compiler or linker, the implementer must specify that in the outputFlag attribute. If the output of the tool usually
has a special prefix, like the prefix I i b for libraries on POSIX systems, the implementer must specify this in the
outputPrefix attribute.

One of the clients of the information in the build model is the makefile generator. It must track the dependencies
between elements in the workspace, and to do that, it needs to know if a file is a header or a source file. Currently,
the build model uses the list of file extensions specified in the headerExtensions attribute to identify a file as
containing an interface.

2.3.1 Schema
Attribute Description Required
id A unique identifier for the tool that will be used by the build |yes
model.
name Human-readable name for the tool to be used in the UlI. yes
sources A comma-separated list of file extensions that the tool will |no
produce output for.
outputs The extension that the tool will produce from a given input. |no
command The command that invokes the tool. For example, gcc for |yes
the Gnu C compiler, or g++ for the Gnu C++ compiler.

outputFlag An optional flag for tools that allow users to specify a name |no
for the artifact of the tool. For example, the GCC compiler
and linker tools typically allow the user to specify the name
of the output with the '-0' flag, whereas the archiver that
creates libraries does not.

outputPrefix Some tools produce files with a special prefix that must be |no
specified. For example, a librarian on POSIX systems
expects the output to be lib.a so 'lib' would be the prefix.

dependencyCalculator Unused in 1.2 no

headerExtensions A comma-separated list of file extensions that are used for |yes
header files by the tool chain.

natureFilter Specify the project natures the tool should apply to. yes

2.3.2 Example

The tool shown in the example below will appear in the Ul with the label Compiler. It will be used to build any file in
the project witha . C, . cc, or. cpp extension and will produce a file with an . o extension. When the makefile is
generated, a rule will be generated with the command g++ <..> -0 <..>.

<target .
<tool
Sources="oo,cpp,C
natne="Compiler™
outputF lag="-o"
outputs=rof
contnand="g++"
headerPrefix="h, hpp, H"
natureFilter="oconature™
id="executable.compliler™>
<optionCategory ..» </optionCategqorys
<option id="category.flags.comp flags" > </option>
</tool> B
<ltargets

2.4 Option Category

A tool can have a large number of options. To help organize the user interface for these options, a hierarchical set
of option categories can be defined. A unique identifier must be specified in the id attribute. This will be used by the
build model to manage the category. The user will see the value assigned to the name attribute. If the category is
nested inside another category, the unique identifier of the higher level category must be specified in the owner
attribute, otherwise use the identifier of the tool the category belongs to.

2.4.1 Schema

Attribute Description Required

id Used by the build model to uniquely identify the option yes
category.

name A human-readable category name, such as 'Pre-processor |yes
Options'. This will be the name the user sees displayed in
the UI.

owner Option categories can be nested inside other option yes
categories. This is the ID of the owner of the category.

2.4.2 Example

This example shows an option category that will be displayed in the Ul with the label Flags. There are two options
defined in this category, General, and Optimization.

<tool .»
<optionCategory
owner="executable.compiler™
natne="F lag="
id="compiler.category.flags™:>
</optionCategorys:
<option
natme="General™
category="compiler.category.flags"™ >
< /option>
<option
name="Cptimization™
category="compiler.category.flags"™ >
</option>
</tools

2.5 Configuration

A target defines the information about the tools needed to build a project for a particular environment.
Configurations are used to pre-define and store the settings that the user specifies for those tools.

A target must have at least one default configuration defined for it. Users can create new configurations for a
project, but they must be based on the settings defined in a default configuration. For example, a user may want to
create a Profile configuration based on the target’s default Debug configuration.

Each configuration must have a unique identifier specified in the id attribute that will be used by the build model to
manage the configuration. It must also have a name that will be displayed in the Ul in the build property page and
new project wizards.

2.5.1 Schema

Attribute Description Required

id A unique identifier that the model manager will use to keep |yes
track of this specific configuration.

name The human-readable name that will be displayed in the Ul |yes
to identify this configuration.

2.5.2 Example

The example below shows a configuration named Default that belongs to the target Executable.

<target namwe="Executable™ >
<oonficquration
hate="lhefzult"
id="example.config.default™ >
</configuration:
</target>

2.6 Tool Reference

A tool reference is primarily intended to be used when saving user settings between sessions. When the user has
overridden an option in the referenced tool, an option reference with the new setting is created and added to the
tool reference.

Tool references are used by the build model for two distinct tasks; because they contain option references, tool
references hold onto user settings between sessions. They can also be added to a default configuration
specification if the default settings for the tool should be overridden. For example, a ‘Debug’ configuration may
have optimization disabled by default, whereas a ‘Release’ configuration may default to the highest possible level.

2.6.1 Schema

Attribute Description Required
id The unique identifier of the tool this is a reference for. yes
2.6.2 Example

The example below shows how the user has overridden the compiler flags option in the compiler tool in the Default
configuration.

<configuration name="Default™ >

<toolReference id = "executable.conpiler™:>
<optionReference id="category.flags.comp flags" ~rafoptionReference
</toolReferences:

</oonfiguration:

2.7 Option

Options in the build model are used to organize and maintain the command arguments that are sent to tools during
the build. Users interact with the build model through the Ul to set the value of options. Options hold different kinds
of values, so there are some subtle, yet important, rules for how options are to be defined. These rules are
summarized in Table 1

Each option must have a unique id for the build model to properly manage it. A descriptive name that will appear in
the Ul must be specified. Options can be organized into categories to keep the Ul more manageable. If an option
category has been defined for the tool, and the option should be displayed as part of that category, then the unique
identifier of the option category must be specified in the category attribute.

2.7.1 Option Types

Some options contain commands to turn a feature off or on, such as setting a flag to see descriptive messages
from a tool. Others contain lists of values, such as a set of directories to search for files. Still others are a single
selection from a pre-determined range of choices, like the level of debugging information to produce, or the type of
architecture to build for. The valueType attribute is used to indicate to the build model what kind of option it is.

Specifying the type of value an option contains is an important design decision, since it controls how the build
model treats the contents of the option’s attributes, and just as importantly, how the option is displayed to the user.
The basic types are st ri ng, bool ean, st ri ngLi st, and enuner at ed.

There are also four specialized cases of list options, i ncl udePat h, def i nedSynbol s, | i bs, and user Gbj s to
manage the list of paths to search for header files, the defined preprocessor symbols, external libraries to link
against, and object module to link in respectively.

2.7.1.1 String Options

An option of type ‘string’ contains a set of values the user has typed in the Ul. When the Ul is created, it will display
the option using a simple entry widget. This option type is useful for options that cannot be easily specified using
lists or enumerations, or for options that are not frequently set. For these types of options, the build model will
ignore what it finds in the command attribute.

2.7.1.2 Boolean Options

An option of type ‘boolean’ is used to specify an option that is either true or false. The option will be displayed to
the user as a check box. The value of the option is set true by selecting the check box, and false by deselecting it.
If true, the command associated with the option will be passed to the tool when it is invoked. The default value of
the option will be considered when it is displayed in the Ul.

2.7.1.3 Enumerated Options

Enumerated options are displayed in the Ul in a drop-down list-box. With enumerated options, the option definition
takes on an organizational role; the important information is stored in the enumerated option values. Any
information specified in defaultValue is ignored, since the contents of the enumerated value definitions are used to
populate the selection widget. The option answers the command of the selected enumerated value, so any
information in command is also ignored.

2.7.1.4 String List Options

String list options are displayed in the Ul using a list control and a button bar that allows users to add, remove, and
reorder list items. Elements of the list are defined and stored in list options values, as described in section 2.9. Like
enumerated options, lists ignore the information in the defaultValue attribute, but unlike the enumerated option,
they treat any pre-defined list option values as defaults. The value defined in the command attribute will be applied
to all the values in the list.

2.7.1.4.1 Special List Options

There are four special cases of string list options; i ncl udePat hs specify the paths to search for header files,
def i nedSynbol s for user-defined preprocessor defines, | i bs for libraries that must be linked into the final build
goal, and user Obj s for external object files that must be linked.

While specifying these types of options as type stringList will make them appear in the Ul correctly, the build model
will not be able to recognize them as special in any way. Since certain functions of the CDT require this information
to function correctly, it is important to flag these types of options appropriately. For example, the search and
indexing function may not perform correctly if the includes paths and defined symbols are not set for a project.
Similarly, the makefile generator may not be able to generate dependencies correctly in the makefile if it is
unaware that there are libraries and external object files that participate in the final build step.

2.7.2 Default Values

Options can contain default values that apply to the option until the user has edited them through the Ul. You can
specify those values using the defaultValue attribute. However, the type of option will determine how the build
model treats the value it finds associated with the attribute. Options that define simple string values will pass the
value to the tool exactly as it is defined in the attribute. For Boolean options, any value but the string t r ue will be
treated as false. List options treat all the defined list option values as default, and enumerated options search
through the defined enumerated values for the default.

2.7.3 Option Commands

The values stored in the options are passed to build tools with unique flags, depending on the compiler and the
option. For example, an option defining the paths a linker should search for libraries might contain a large number
of search paths, but each path is passed to the linker with a - L flag. The command attribute is used to hold the
actual flag to pass along with the option value.

The build model handles the value it finds associated with the command attribute differently depending on the type
of value the option is managing based on the following heuristic. For string options, the command is ignored since

the contents of the option are treated as the command. For enumerated options, the command associated with the
selected enumerated value is used, not the command defined in the option. For Boolean options, the command is
used if the option value is set to true, otherwise it is ignored. For list options, the command is applied to each
element of the list.

Option Value Type Uses Default Value Uses Command Ul Element

string Yes No Entry widget

boolean Yes Yes if true, else no Check box

enumerated No. No. Drop-down list-box

stringList No. Yes. List and button bar

2.7.4 Schema

Attribute Description Required

id A unique identifier for the tool that will be used by the build |yes
model.

name Human-readable name for the tool to be used in the UlI. yes

valueType Type of value the option contains. yes

category This is the id of the option category for this option. Theid [no

can be the id of the tool which is also a category.

defaultValue Optionally specifies the value for the option if the user has [nho
not edited it. For options containing a Boolean value, the

string ‘true’ is treated as 1, any other value as 0.

command An optional value that specifies the actual command that |no

will be passed to the tool on the command line.

2.7.5 Example

The example below shows the specification for the optimization level option for a compiler. Note that it is an
enumerated type, so the only attributes defined for the option itself are its id for the build model, a human-readable
name, the id of the category it belongs to, and the type of value the option holds.

<target nawe="Executakble™ >
<option

namwe="Cptimization Lewvel™

valueType="enumerated”

category="compiler.cat.optimization®™

id="optimization. lewvel®™:>

<enunerateddptionValue
name="kone [(-00) "
contnand="-o0"
id="level.none">

</ enumeratedOptionValues

<enunerateddptionValue
name="Cptimize (011"
contnand="-01"
id="level.optimize™>

</ enumeratedOptionValues

<enunerateddptionValue
name="Cptimize more [—-02]"
izhefault="tru="
contnand="-Cz "
id="level.more >

</ enumeratedOpt ionValuer

<enumeratedOptionValue
nawe="0Optimize most [—-03] "
contnand="-C3 "
id="level.most ">

</ enumeratedOpt ionValuer

</option>
</targetr

2.8 Option Reference

An option reference always belongs to a tool reference, and is used in two ways. First, the build model uses option
references to hold onto information the user has changed through the Ul and to store it between sessions. The
second is to override the default option settings in a configuration.

The reference identifies the option it overrides through the id attribute. The defaultValue attribute is used to hold
onto the user entry, but it is used differently depending on the valueType of the option. The attribute contains the
strings t r ue or f al se for Boolean options. String options contain the data entered by the user. For enumerated
options, the attribute contains the selected enumerated list value. For list options, this attribute is not used. Instead,
listOptionValues are used.

2.8.1 Schema

Attribute Description Required

id The unique identifier of the option that this is a reference to. lyes

defaultValue For boolean and string options, this field is used to hold the |no
\value entered by the user. For enumerated options, it is
used to hold the selected enumerated option value. For list
options, this attribute is not used.

command unused in 1.2 no

2.8.2 Example

The example below shows how the build model saves overridden option information in the project file. In this case,
the tool reference is a linker, and the option references are for linker flags and library paths.

<toolReference id="linker™:
<optionPeference defaultValue="-sghared —-fPIC" id="linker.flagz"/>
<optionReference id="linker.paths">
<listOptionValue walue="/home/ morkspace/ ProjectB™ />
</optionReferences>
</toolReference:

2.9 List Option Value

Some options are best described using a list of values. This build model element is used to define an individual
element of a list option. Typically, these options are populated by the user, not by the person describing the option.
However, if you define one or more values in your extension point, they will be displayed in the Ul when the user
edits the build settings for the project. If the user modifies those settings, the overridden values will be stored by
the build model and displayed in the UL.

There is an exception to this, however. Certain core functions in the CDT rely on the built-in parser to function
correctly. In order to return accurate values, the CDT parser must mimic (as closely as possible) the preprocessor
that ships with the tool chain used by the target. Unfortunately, these tools often have a number of built-in symbols
and include paths that the user is never required to set, and may be unaware even exist. In those cases, the
implementer of the tool chain must set those values in the tool definition and flag them by setting the value of the
builtin attribute to true. Built in list option values are never shown to the user, and are only passed to clients of the
build model that specifically request them.

2.9.1 Schema
Attribute Description Required
builtin An optional Boolean field that tells the build model to treat [no
the value defined as read-only.
value The contents of the list item. The build model will apply the |no
flag defined in the option to each value in the list.

2.9.2 Example

The example below shows an option, Defined Symbols, which contains a pre-populated list of built-in values;
_1386__,and __i 386__ respectively.

<option name="Defined Syvmbols" valueType="definedlvobols"™ >

<listoptionValue
builtIn="tru="
wvalue=" I35 >

</ listOptionValue >

<liztCptionValue
builtIn="tru=s"
walue=" 138 ">

</ listOptionValue >

< foption>

2.10 Enumerated Option Value

Some options are best described as a single selection from a list of choices. For example, users typically select the
level of optimization they want the compiler to apply when creating a build artifact. The enumerate option value is
used to define the elements of the list of choices.

Each element of an enumerated option has a name that will be shown to the user in the Ul. It also has a command
which should correspond to the command line option that gets passed to the tool by the builder if this element is
selected.

A default element can be indicated by setting the value of isDefault to ‘true’. If the user has not overridden the
selection in the Ul, the default element will be displayed. If no default is specified, the first element in the list is
assumed to be the default and is displayed to the user.

2.10.1 Schema

Attribute Description Required

id A unique identifier for the tool that will be used by the build |yes
model.

name A descriptive name that will be displayed to the user in the |yes

Ul as one of the option values to select.

isDefault Flags this enumerated value as the default to apply to the |no
option if the user has not changed the setting.

command The command that the enumerated value translates to on |yes
the command line.

2.10.2 Example

The option below shows an enumerated option to flag the language dialect for the Gnu preprocessor.

<option namwe="2ource Language™ walueType="enumerated™ >
<enumerateddptionValue
hatme="C"
command="-x ="
ishefault="trues”

1d="source.language.c™>
</enumerateddptionWalues
<enumerateddptionvValue
nawme="C++"

comwand="-x o++" >
</enumeratedOpt ionValues
<foption>

3 Ul Representation

In addition to controlling the way a project is built, the build model also defines how the user interface will appear.
There are two principle ways a user interacts with the build settings model. The first is at project creation time
through the New Project wizards, the second is through the build settings property page.

3.1 New Project Wizard

The new project wizard relies on the target and configuration settings from all specified tool chains to populate the
list of choices it presents to the user. The figure below shows how the list of targets is populated with any target
whose isTest and isAbstract attribute are set to f al se. The value of the target's name attribute is used to populate
the drop-down list-box selection widget. Similarly, the configuration check list is populated with all the defined
configurations associated with the selected target. Note that the target selection widget is labelled Platform in the

Ul. This will change in the next iteration of the build system as we further refine the concept of host target and build
target.

<lLargeal
isTest="falses"
name="Cyvgwin Executable"
lsAbstract="lalze"
-
ctarget
1sTest="lalze"
name="Cygwin Shared Library"
ishbstract="fa_=ze"
I
“harget .=
Managed Make Project
Creste & new Managad Make project. %
Platform; |Cwmi'-fmu.lhbh: e .:.J
Configurations:
BTy relesse

Ed T3 Debug <configuration
name="Fel sase"

ideMoygwin.exec.releaze">
</configuration>
Zoeonfiguration

name="Cebug"

id="cygwin.exec.debug">

Z/confilgurations

Figure 3 New project wizard
3.2 Build Property Page

The contents of the build property page for a project are created by examining the tools, option categories, and
options defined for the current configuration and target. In this section we will look at how the user interface
interprets the information in the build model to display options to the user.

The configuration information pane of the build property page consists of two -boxes. The first is populated with a
list of all targets that apply to the project. The second contains a list of configurations that are defined for the target
currently selected in the first. The figure below shows a project targeted solely at a Cygwin executable, with two
configurations ‘Release’ (not shown), and ‘Debug’. Note that the build settings model is queried for the target and

configuration name information.

wharask
Lefeste"alae"
nama="Cyawin Hxeoupabla
Earent="oygwin®
defapnltExtension=exa®
ishhatractefalse”
=" eyawin, axac™s

ceonfiguration
: . nape="He Loase
Cilad s id="avgwin =Tel 15 R

................................... & F OO F i Aura b i:;-T: -

i ; HEEE
[Ackies contEpration ‘w_mr#ﬂﬂﬂﬂ
CPstforn. |Cygwn Exeotabis 4 fﬂ____...--—-"" =]
i el
| - e =
| Configuration; | D e =] Hanage ..
e
m-ﬂh‘ m{lr"ﬁi A A A A A T e -""‘-----._______---_“---1]
= - " coanfiguracion
=T - Coangitar “amgher Fiegs |" namm?": " :
B Fraproreszay SHEHR P : 2t id="cyiwin, exeo debun™s i
m b |Jﬁmz¢{r{}lg J Sfoonfigurations .
#7 Comemand Line Debug Level |abadi (-g) =
=T ke rrhuis Taihe

Figure 4 Configuration selection

Users change the build settings for options associated with categories and tools. The Ul relies on the information in
the build settings model for that information. The figure below shows how the tool list, displayed in a tree view, is
populated. Tools are the root elements of the tree. Categories are displayed as leaves of the tool they belong to. In
both cases, the name defined in the plug-in manifest is used as the text of the tree elements. Note that the tool
uses an externalized string to identify its name to help internationalize a tool specification, but this is not necessary.

SELEbuRd . (f:f:—zl_'_;:r:'-l-'i'_tr:'-:="lr
Active configuration ﬁf,l,:;ze: mpiler™
Platform: | Cygwin Executable Eﬁzéiigjzf ions="h, ="
Configuration: |Debug :::;ﬁdrj:
Configuration settings ?f}u_‘x mple.tool.compllers>
=T Compiler— Cormpiler Flag
H“: Preprocessor Optimization L
EE‘ COmMman Debug Level
=T Linker de Paths
B General

BE Command Line

=apl lTanCal egory
awnerm"gxample.tool.complle:
name="General”
'|-:]="—'-.:'|[.'—'--' :'|[.' ler . oal L eral ">

<JoptionCategory>

[Werbose

Figure 5 Tools and option category display

As mentioned in the discussion of the build settings model, options know what type of data they manage. Different
option types require different Ul widgets to properly represent that data to the user. The figure below shows what
Ul elements are created for each type of option.

The Compiler Flags option contains a string option. In this example, the option is intended to be the place the user
enters all those extra flags that are not defined anywhere else in the property page. Options containing strings
display their contents in a simple entry widget.

The Optimization Level option is an enumerated option. These types of options force the user to select a single
value from a list of possible choices. Note that the name of the option is applied to the label in the Ul, whereas the
name of each individual enumeratedOptionValue element is used to populate the list.

The Include Paths option is a special case of a stringList option. The contents of this option are left undefined in
this example, so the user sees an empty list. However, all list options are displayed in a list control with an
associated button bar for adding, removing, and reordering list elements. Note that the optionType attribute is set
to i ncl udePat h. This notifies the build system that it must pay special attention to the values entered in this
option. There are clients of this information in the CDT that will query the build system for this information, and this
is currently the only way to flag these values as special.

“option
defanltifalue= "=z
rame="Compiler Flag="
category="cyguwin.compil er. category. genecal
waluaeType="skring"
id="cyquwin. compiler . genercal .ccflags=s" >

</ optionz

TAN s T -

: | “option

n i e e e |.:':|! o {700 .__..| name="pk ::_I:-.-.:.sa.i:: 1am Lt"?:l ")
; P cabegory="cyguin. conpiler. category. genercal

o Pode walnaType="ermerat=4"

id="cygwin.coempiler. general .optimisation.lewel " >
<emumerasediptionifalue
name="Hore [(-001"
command="-00"
id="crrguin . eptimisation.lewvel none" >
< erame rat e ddpt ionifalue -
“enumerazediptionifalue
name="0ptimize [(-0L1)"
command="-01"
id="cyrguin.eptimisation.lewve]l (optimize" >
</ ermameratedipt ionifal ue-

< optbioni-

“<option
name="Includes Fach="
category= "cygquwin.compil ar . category.general
command= "-I"
walueType="includeFath"
id="cgrquin. compiler_ general | include _pach="
</ option-

<optiom
defanltifalus= "fal ="
name="jerho=a"

category="cyguwin.compiler. category. genearal
conmand="-"
walneType="hool aan”

id="cerrgwin.compiler.general .wverboze" >
< option

Figure 6 Option display

Finally Verbose, a Boolean option, is displayed as a check-box. Since the default value for this option is defined as
f al se, the check-box is left unselected when it is created.

Note that the Ul actually builds itself on the fly based on the options descriptions in the plug-in manifest. The order
of the options is the basis of the page layout. If the layout is not satisfactory, you must edit the plug-in file itself. You
must then restart the workspace after editing the manifest for your changes to take effect in the Ul.

4 Makefile Generator

The third key element of the managed build system is the makefile generator. The makefile generator is one of the
key clients of the information stored in the build settings model. The best way to understand how the makefile
generator works is to look at a real project. The figure below shows the project that we will be using for the
purposes of this discussion. The source for the project is spread over the directories sour cel/, sour ce2/, and
sour ce2/ sour ce21. Header files are located in 2 locations; header s/, and sour ce2/ sour ce21.

e
% = '.; Frojects
~ [headers
+ L_'! Class1.h
#-le] Class2.h
=il SOLCE L
¥ [6] Class1.cpp
—-fet SOUNCEZ
souncedl
el Class?t b
€] Class2l.cpp

+
] i‘]
[N gl L1

ClassZ.cpp
+-- €] main.cpp

Figure 7 Example project source files

While simple, this example illustrates some of the problems projects using make typically face when source files
are organized hierarchically. One approach to these types of problems is to generate a makefile for each
subdirectory, then call make recursively, culminating in the final build step which, in theory, brings all of the build
results together.

The problem with managing this type of approach lies in understanding the dependencies and handling them
properly when the makefiles are generated. In order for this to happen, all the dependencies have to be properly
specified and complete. As long as there are no dependencies between resources in different subdirectories, the
makefiles in a recursive approach will contain a properly partitioned set of dependencies. However, in a more
realistic project organization, the fragmentary makefiles will have incomplete representations of the dependencies.
In order to correct for this, we would have to do some of the work that make gives us for free.

The approach the makefile generator takes is to use a single makefile to build the entire project. To keep the
makefile manageable and readable, the makefile generator creates makefile and dependency file fragments for
each subdirectory of the project that contributes source code, and uses the include capability of make to bring them

all together.

The figure below shows the makefile, makefile fragments, and dependency fragments that are generated for the
project.

------ = E Binaries

) #-%F MainProject exe - [xB6le]
%5 (@ headers
ﬁl == Helsass
=& sourcel
%-[3] Classl.o- [xB6le]
_ subdir.dep
subdir .k

.....

subdir . dep
: cuhdir.mk
#-le) Class2.o - [xBele]
_ subdir.dep
- subadir .k
ola] main.o - [x86le]
ke MainProject .exe - [xB6d)

#{& sourcel
-5 sourcs?
- (€] main.cpp

Figure 8 Generated makefiles

In the next sections, we will examine the makefiles that are generated in more detail.
4.1 Main Makefile

There is one main makefile generated for a project. Based on information for the target, the proper clean command
is defined as a macro. Note that for efficiency, the contents of macros are calculated only when they are defined or
modified, thus all assignment operators are generated as .=’ or ‘+=" with the exception of the list of objects.

The makefile defines the macros that hold the list of build sources, but they are populated in the makefile
fragments. It also contains a list of subdirectories that contribute source files to the build. The makefile generator
will generate fragmentary makefiles for each of the directories, so the main makefile must include each of these
fragments.

BOOT :=
PM = rm -rf

Each subdirectory muast contribute its source files here
C_SRCE :-=
CC_SRCE =
CH EDCE
CAPC SRCS =
CPP_ZRCE

LIES :=
T3ER _OBJE o=

0BT = $(C_SBCS:# (ROOT)/%.c=%.0) #(CC_SZRC3:$(ROOT) %.co=%.0) #IC304 SRCS:#(ROOT) %.cxx=%.0) 3
$ (CAPC SRCES:$(ROOT) /%.C=%.0) $(CPP_SRCS:$ (ROOT) /%.cpp=%.0)

Every subdirectory with sowrce files must be described here
SUBDIRS := 1

sources fsourcell b

sourced

sourcel B

k!

Include the makefiles for each source subdirectory
—include ${patsubst %, %/subdir.mlkz, $ (SUEDIRS)}

all: MainProject.exe

MainProject_exe: # (0OBJS)
gt+ —o F@ #(0BJES) $F(UZER_OEJS) 7 (LIES)

clean:
-%(PM) (0BJS) MainProject.exe

.PHONTY: all clean deps

Include automatically-generated dependency list:
—include #F{patsubst %, %/ subdir_dep, #{(STELIRZ)}

This makefile is passed as an argument to make, so it contains the real build target, along with clean and all
targets. Finally, the makefile generator will calculate dependencies for each of the source files in the build, and
generate these into a dependency fragment for each subdirectory. The main makefile includes each of the
fragments as well.

4.2 Makefile Fragments

Obviously, the makefile we just looked at is incomplete. There are no rules for building actual source files, and no
source files listed. However, the makefile generator places that information into makefile fragments for each
subdirectory contributing source to the build. The figure below shows what the fragment for the sour cel/
subdirectory looks like.

Each subdirectory muast contrilbuate its source files here
C_ZSDCE += 1

F{addprefix (RPOOT) fsourcelys b

}

CC_SDRCE 4= 1
F{addprefixz F(BIOT)/sourcels
}

Cx BRCE 4=,
${addprefix §({BOOT) sourcels

}

CAPC SRCE += 3
F{addprefixz F(BIO0T)/ sowrcels N
}

CEP_SEBCE += 14
F{addprefixz F(BIO0T)/ sowrcels N
Classl.cpp

}

Each subdirectory must supply rules for building sources it concrilbutes
souarcel /% _ oz # (BOOT) fsourcel /% . crp
g+ -I. -I.. -IC:%eclipsehruktime-workspace \Projectiiheaders -03 -gstabs -Wall -co -o F@ £«

The fragment contributes one file, cl ass1. cpp, and a rule to build all source files with the ‘cpp’ extension. The
content of the dependency and command lines is derived from the build settings model. For the dependency line,
the makefile generator asks the build model if there are any tools that build files with a particular extension. If so,
the tool is asked for the extension of the output. For the command line, the tool that builds for the extension
supplies the actual command, while the options for the tool supply the arguments to pass to it.

4.3 Dependency Makefile Fragments

There is one final piece to the puzzle, and that is a list of dependencies for each source file in the build. Recall that
make will rebuild any file that is out of date in its dependency graph, but it only adds the dependency to the graph if
it is explicitly told to do so. Thus, it is the responsibility of the makefile generator to completely describe all
dependencies for make. Consider the dependencies of the final build target to Class1, as shown in the graph
above. We can see that make will need to rebuild Cl ass1. o if C assl1. cpp, C assl. horC ass2. h changes.
In the makefile fragment, we have only defined a dependency between files with an ‘0’ and a ‘cpp’ extension.

The makefile generator places the remaining, explicit dependencies in a separate makefile fragment for each
subdirectory. The figure below shows the fragment for the sour cel/ subdirectory.

Automatically-generated dependency list:
sourcel/Classl.o: 4
Cihveclipsel\runtime-workspacehProjectlhl headersi Class1.h b
Ciheclipasehruntime—workspacehProjectld headersh Classz . h

4.4 Inter-Project Dependencies

A project may reference one or more additional projects in the workspace. The makefile generator attempts to
generate these dependencies in two ways. First, the makefile must have a dependency on the build goal of the
referenced project in the main target, and it must include instructions for building those targets as a separate rule.

For the remainder of this discussion, let us consider the following basic scenario. Project A builds an executable, a.

exe. It references project B which builds a library | i bB. a. The main build target in the makefile for project A would
be generated with the output of project B as a dependency.

all: deps A.exe

deps:
cd C:/Eclipsesruntime-workspace/ProjectE/Release && § (MAEE)] clean all

bL.exe: §(0OBJ3) C:/Eclipsefruntime-workspace/ProjectB/Release/libE.a
g++ —o §0@ §(0BJ3) §(UIER _OBJI) §(LIB3)

As you can see from the generated makefile above, the rule for the target A. exe will be evaluated if the output of B
has changed. This works well if the output of project B can be determined. However, that is only the case when
project B is managed. Standard make projects do not know what the output of their build step is since that
information is encoded in the makefile. If project A references a standard project, it will not have an explicit
dependency on the output of that project.

The second element of the inter-project dependency is the rule to build the dependent project. This is generated as
part of the deps target to ensure that the output of B is up-to-date when A is built. The rule to build the referenced
project is simply a command to change to the appropriate build directory of the referenced project and call make
again. Note that $(MAKE) will evaluate to the same invocation that was used to build the main project including the
flags that were passed to it.

5 Tutorial: An Example Tool Chain

New managed build system tool chains are specified by extending the ManagedBui | dI nf o extension point
defined in the or g. ecl i pse. cdt . managedbui | der. cor e plug-in. The easiest way to do this is to create a new
plug-in project and add your own definitions there.

5.1 Setting up your Environment

If you are starting with a clean environment, you will need to import the plug-ins or g. ecl i pse. cdt. core, org.
ecl i pse. cdt. make. ui,and or g. ecl i pse. cdt. managedbui | der. ui (and any plug-ins they require) into
your run-time workbench instance by performing the steps below. If you already have the required plug-ins in your
workbench instance, proceed to the section "Creating your plug-in project".

=

From the resource perspective, use File > Import... > External Plug-ins and Fragments.
2. Continue clicking on the Next > button until you get to the screen called Selection. This screen will contain
a list of all of the plug-ins in your host workbench instance.
3. Selectorg. eclipse.cdt.core,org. eclipse.cdt. make. ui,andorg. eclipse. cdt.
managedbui | der. ui from the list and then click the button Add Required Plug-ins.
4. Click on the Finish button. Your Navigator view should contain the selected plug-ins and all of the plug-ins
they require.

5.2 Creating your Plug-in Project

You will need to create a project to add your tool chain definition. Technically the extension can be defined in any
plug-in manifest, but for this tutorial we will create a new, empty plug-in project with an empty plug-in manifest file.

1.

2.

3.

4.

Open the New Project... wizard (File > New > Project...), choose Plug-in Project from the Plug-in
Development category and click the Next > button.

On the Plug-in Project Name page, use or g. ecl i pse. cdt . exanpl e. t ool chai n as the name for your
project, and click the Next > button.

On the Plug-in Project Structure Page you will see that the wizard has set the id to or g. ecl i pse. cdt.
exanpl e. t ool chai n by default. We are going to be defining the tool chain in the plug-in manifest file
without writing any code, so choose the Create a simple project radio button and click on the Finish
button.

If asked if you would like to switch to the Plug-in Development perspective, answer Yes.

5.3 Creating the Extension

You have added the required plug-ins to your workspace instance and you have a brand new project with an empty
manifest file. We are now ready to add our tool chain definition to the managed build system by extending the
ManagedBui | dl nf o extension point.

1.

2.

Double click on the or g. ecl i pse. cdt . exanpl e. t ool chai n project in the Package Explorer to
expand it. Double click on the plugin.xml file to edit its contents.

We have to add a dependency between our project and the or g. ecl i pse. cdt . managedbui | der. core
plug-in where the extension point is defined. Click on the Dependencies tab located along the bottom of
the manifest editor. Click the Add... button located beside the Required Plug-Ins list. Select or g.

ecl i pse. cdt. managedbui | der. cor e from the list and then click the Finish button.

Select the Extensions tab located along the bottom of the manifest editor. Click the Add... button located
beside the All Extensions list. Make sure that Generic Wizards is selected in the left-hand list, and
Schema-based Extensions from the right, and then click the Next > button.

You should now be on the Extension Point Selection page. Make sure that the Show only extension
points from the required plug-ins check-box is selected. Select or g. ecl i pse. cdt . mranagedbui | der.
cor e. ManagedBui | dI nf o from the list of extension points. Use or g. ecl i pse. cdt . exanpl e.

t ool chai n as the Point ID for the extension, and Exanpl e Tool Chai n for the Point Name. Click the
Finish button.

5.4 Adding a Target

Now we will add a new target, configuration, and an example tool to the extension.

. Right click on org. ecli pse. cdt. managedbui | der. cor e. ManagedBui | dI nf o to access the context

menu. Select New > target to add a target definition. A new target named or g. ecl i pse. cdt . exanpl e.

t ool chai n. t arget [n] should appear below the extension point. Right click on the new target to access
the context menu and select Properties to open the properties editor for the new entry.

Let’s give the new target a better name. Locate the name property in the Properties browser and click on
the row to edit the value of the property. For now, let's use the name Exanpl e Execut abl e for our target.
Set the value of the binary parser property based on the platform you will be using to create your example
projects on. For example, if you are running this tutorial on Linux or Solaris, enter the value or g. ecl i pse.
cdt. core. ELF. If you are running the tutorial on Windows, enter the value or g. ecl i pse. cdt . cor e. PE.
Now set the clean command for the target. For the purposes of this example, click on the cleanCommand
property to edit it and enter rm —f .

. Do the same for the make command. Locate the makeCommand property, click on it to edit the value, and

enter make.
We want the new target to appear when we run the new project wizard on our host platform, so we have to

define the operating systems that the target should be visible on. Locate the osList property and click it to
edit the value. Enter wi n32 if you are running the tutorial on Windows, | i nux if you are running on one of
the Linux distributions, or sol ari s if you are running on a version of Solaris.

5.5 Adding a Configuration

We have now added a basic target definition. We now want to define a default configuration. Normally, you would
consider defining both a release and debug configuration, but we want to keep this example simple so we will
restrict ourselves to a single configuration.

1.

2.

Right click on Example Executable in the All Extensions list. From the context menu select New >
configuration. Click on the new configuration to bring up its properties in the property browser.
Click on the name property and edit the value to be Test Confi gurati on.

5.6 Adding a Tool

We could now run the new project wizard and create a new managed project based on this target, but before we
do that, let’s define a tool for the target.

. Right click on Example Executable to get the context menu and select New > tool. Give the tool the name

Compi | er.

Tools declare which file extensions they operate on and, optionally, the file extensions they produce. Our
imaginary compiler only works on files with a ‘c’ or ‘C’ extension. Locate the sources property and set its
contents to be a comma-separated list containing ¢, C. Note that there should not be any spaces between
the values. Let us assume that the output of the compiler is an object module that has the extension ‘0’. Set
the value of the outputs property of the tool to o.

Let us assume that the tool should appear for both C and C++ projects, although this is not always the
case. Locate the natureFilter property and select bot h from the list of choices.

The build model needs to know if there are any special file extensions that indicate a file is a *header’ file.
Set the headersExtension property to be a comma-separated list containing h, H.

Tools often have a flag to specify the output of a tool. For the purposes of this example, set the outputFlag
property to - 0.

Finally, we want to specify the command that is needed to invoke the tool. For this example, we are not
interested in actually calling a real tool, so just enter ccc as the value for the command property.

5.7 Testing the Target

We have now defined enough information to create a project for our new example target, so let’s go test it out.

1.

w N

4.

Make sure our example project is selected in the Package Explorer. Select Run > Debug As > Run-time
Workbench to start a new run-time workbench instance that includes the new tool information you have
created. You may be prompted to save the resource you were editing. If prompted, answer Yes.

In the new workspace, open the C/C++ Development Perspective.

Run the new project wizard. From the Selection page choose either a managed C or C++ project. Click the
Next > button, give your project any name you wish, and click Next > again. Note, if the wizard does not
display a next button, you have probably forgotten to specify the make and clean commands. You will have
to add this information to the tool chain definition and restart your debugging session.

You should now be at the Select a Target page. Your new target will appear as a choice in the Platform

selection widget. Select it and note that the list of available configurations now contains the single
configuration we defined for the target. Click Finish.

5. Right click on your new project in the Navigator or C/C++ Project view to access the context menu, and
select Properties to open the property browser for the project. Select C/C++ Build from the choices and
note that the tool we defined appears in the list.

At this point, you have no doubt noticed that the property page does not have any way to edit the settings for the
tool. That is because we have not defined any options yet. It is time to edit the tool chain definition again.

5.8 Adding Tool Options

Users expect to be able to change the settings for their build tools through the property page for a project. What
they see is controlled by the way options are defined in the tool chain specification. We will create an option
category, and then add two example options to it.

1. Switch back to the Plug-in Development perspective. Right click on the Conpi | er entry in the extension
description to bring up the context menu. Select New > optionCategory to add the category. Set the name
of the category to Gener al .
2. You must specify the id of the tool the category belongs to in the owner property. The simplest way to do
this is to copy the id from the compiler and paste it into the owner property of the category. Click on the
Conpi | er entry to open its properties. Right click on the id property as though you were going to edit it.
Instead of typing, hit ctrl-c. Switch back to the option category, right click the owner property and hit ctrl-v.
Set the unique id of the category to anything you want, for example exanpl e. t ool chai n. cat . conp.
Right click on the tool, not the category, to bring up its context menu and select New > option to add our
first option. Name the option | ncl ude pat hs and set the valueType property to i ncl udePat h from the
list of choices. Please refer to section 2.7 for a description of value types and options. In the command
property, enter - | . In the category property, put the unique id of the category that you entered in step 3.
5. Add another option to the compiler. Set its name to Gt her fl ags. Setits valueType to stri ng, its
category to be the id you created in step 3, and its defaultValue to - c.

hw

At this point, you can test how your options appear in the Ul by debugging your run-time workbench. You should
see something like this.

livic A Bty
£ B
Prodect RoinEnces AL DOy
Platiom: Examgle Exiscirable l |
Condquation; | Test Comthquration | LN O ..
ConfigUiaion Sdrminos
w T Complier il o T S BB O :
IR v]
Ok Nigrs
Fesioi Gk | Aog |
| o | Tancel |

Figure 9 Property page with tool and category
5.9 Taking the Next Step

The purpose of the tutorial you just followed was to become familiar with the steps involved in creating a simple
tool chain, and to get a feeling for how the choices you make in the specification of options affect the Ul. In this
section, we will discuss some additional points that you need to consider before specifying your own tool chain.

5.9.1 Adding More Tools

Unless you just happen to have a compiler on your system that is invoked with ‘ccc’, the example tool we created is
not going to build anything. Further, the tool we defined transforms source files into object files. Another tool, like a
linker, would be needed to transform those object files into a final build goal. For most targets, defining a compiler
and “something else” is usually sufficient, but you may have to define additional tools if your tool chain requires
intermediate build steps to function properly.

5.9.2 Defined Symbols and Header File Search Paths

There are elements of the CDT core that require build information to function properly. Things like the indexing
service, search, or code-assist will only function correctly if the built-in parser can retrieve information about the
paths to search for include files and the preprocessor symbols defined for the project. The build model only
promises to store the type and value of an option, it does not know anything about the contents. However, you can
flag certain options as special so the build model will know to pay special attention to them. As the implementer of
the tool chain, you should make sure your specification has options of type “includePaths” and “definedSymbols”.
The build model will pay special attention to these options and answer them to the appropriate clients in the CDT
core without any further intervention on your part.

5.9.3 Built-in Symbols and Search Paths

Every compiler relies on having a correct set of preprocessor symbols and header file search paths to perform
proper builds. Even compiler from the same vendor may use different symbols and search paths when building for
different operating systems. Some of these values may be defined by the user, but others will be built into the tools
themselves so the user will be unaware of them. Unfortunately, the CDT parser needs to know about the entire set
to properly parse source files.

There are two approaches you can take, but both involve pre-populating the include path and defined symbol
options with list option values containing the correct information. If you add a value to the include path or symbol
option, it will be displayed to the user by default. This may be the right approach to take if you believe that users
will change these values frequently. However, it will clutter the Ul with values and since they are editable, users
may delete them accidentally.

The alternative is to flag the list option value as a built-in value. In this case, the user will not be able to edit the
values through the Ul. This has the advantage of keeping the Ul cleaner, but the only way for the user to edit these
values if something changes is to directly edit the plug-in manifest where the extension is specified.

The CDT team is currently developing a mechanism to specify this information in an extensible way. In the current
release however, we are relying on the implementers of a tool chain to supply the default symbols and paths in
their specification. Please refer to section 2.9 for more details on specifying list option values.

5.9.4 User-Specified Libraries and Object Modules

Similarly, a user may want to specify external libraries to link against in the final build step. The build model needs
to be told to pay special attention to an option containing libraries so that when the makefile generator requests
them, it can answer a valid list. Flag the option value type as “libs” for external libraries or “userObjs” for object
modules.

5.9.5 Target Hierarchies

One area of the build model that the tutorial does not touch on is the concept of abstract targets discussed in
section 2.2.1. It would be quite time consuming, not to mention error prone, if you had to redefine common tools or
properties each time you wanted to create a new target. Instead, the build model allows you to organize targets
into hierarchies that promote the sharing of common property settings and tools between related targets. When you
create a parent target though, you may not want that target to be selected by the user in the new project wizard. In
that case, make the target abstract and it will no longer appear as an option for users. Flagging a target as abstract
is a Ul design decision; you can declare a non-abstract target as the parent of another target. You just have to be
sure that you want the user to be able to create a new project based on the parent as well as the child.

5.9.6 Publishing your Plug-in

The subject of packaging Eclipse plug-ins is well covered in the Platform Plug-in Developer Guide. It is strongly
recommended that you review this information carefully if you plan on deploying products based on Eclipse.
However, making your tool-chain specification available to other users of Eclipse is not difficult. You must supply
the plugin manifest we created inside the Eclipse platform's plug-in directory. The plug-in directory is named
plugins and is typically located underneath the main directory where you installed the Eclipse platform.

1. From the Plug-in Development Perspective, select the plugin.xml file for your plug-in in the package
explorer. Open the File > Export... wizard. On the Select page, chose File system from the export

destination list. Click the Next > button.

. Make sure that or g. ecl i pse. cdt. exanpl e. t ool chai n is selected in the left-hand list and that only
plugin.xml is selected in the right. To select an export destination, click the Browse... button beside the
entry widget labelled To directory. Browse to the plugins subdirectory of your Eclipse installation. Click the
Finish button.

. Restart Eclipse, switch to the C/C++ Development Perspective and run the new project wizard to create a
new project based on your tool-chain specification.

Debug

This section describes CDT debug concepts.

Breakpoints
Debug overview
Debug information

Error Parsing
Invoking Make

& Copyright IBM Corporation and others 2000, 2004,

Breakpoints

A breakpoint suspends the execution of athread at the location where the breakpoint is set. To set a
breakpoint, right-click in the frame on the left side of an editor beside the line where you want the
breakpoint, then choose Add Breakpoint.

Once set, a breakpoint can be enabled and disabled by right-clicking on itsicon or by right-clicking on
its description in the Breakpoints view.

. When abreakpoint is enabled, it causes athread to suspend whenever it is hit. Enabled

breakpoints are indicated with ablue ® circle. Enabled breakpoints that are successfully
installed are indicated with a checkmark overlay.
. When abreakpoint is disabled, it will not cause threads to suspend. Disabled breakpoints are

indicated with awhite - circle.
€] * main.cpp 53

#include <iostreaun:
Hinclude <string:>
using namespace std;

int mwaini)
{
string yourlate;

cout << "Enter wour namwe: ™
cin >> yourlName:;
for [(int index = 0; index < 5; ++index) |
Line breakpoint: main.cpp [line: 12]]
T% cout << "Hello " + wourlMaagne + 7.7 << endl;

K

conut << endl:
return 0O;

Debugging breakpoints are displayed in the marker bar in the editor area and in the Breakpoints view.

Note: Execution will also suspend if Stop at main() on startup is enabled on the Launch
Configuration dialog. To access the L aunch Configuration dialog, from the menu bar choose Run >
Debug.

Related reference
Run menu

Breakpoints view

@ Copyright Red Hat 2003, 2004,
(€ Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/reference/cdt_o_views.htm
file:///C|/test/docs/reference/cdt_o_views.htm

Debug overview

The debugger lets you see what's going on "inside" a program while it executes.

In order to debug your application, you must use executables compiled for debugging. These
executables contain additional debug information that |ets the debugger make direct associations
between the source code and the binaries generated from that original source.

The CDT debugger uses GDB as the underlying debug engine. It translates each user interface action
into a sequence of GDB commands and processes the output from GDB to display the current state of
the program being debugged.

Tip: Editing the source after compiling causes the line numbering to be out of step because the debug
information istied directly to the source. Similarly, debugging optimized binaries can also cause
unexpected jumps in the execution trace.

Related concepts

Overview of the CDT
Debug information

Related tasks
Debugaging

Related reference

Run and Debug dialog box

£ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_run_dbg_pages.htm

Debug information

The Debug perspective lets you manage the debugging or running of a program in the Workbench. Y ou
can control the execution of your program by setting breakpoints, suspending launched programs,
stepping through your code, and examining the contents of variables.

The Debug perspective displays the following information:

. The stack frame for the suspended threads for each target that you are debugging
. Each thread in your program represented as a node in the tree
. The process for each program that you are running

The Debug perspective also drives the C/C++ Editor. Asyou step through your program, the C/C++
Editor highlights the location of the execution pointer.

Variables

Y ou can view information about the variablesin a selected stack frame in the Variables view. When
execution stops, the changed values are by default highlighted in red. Like the other debug-related
views, the Variables view does not refresh as you run your executable. A refresh occurs when execution
stops.

Expressions

An expression is a snippet of code that can be evaluated to produce aresult. The context for an
expression depends on the particular debug model. Some expressions may need to be evaluated at a
specific location in the program so that the variables can be referenced. Y ou can view information about
expressionsin the Expressions view.

Registers

Y ou can view information about the registersin a selected stack frame. Values that have changed are
highlighted in the Registers view when your program stops.

Memory

Y ou can inspect and change your process memory.

Shared libraries

Y ou can view information about the shared libraries loaded in the current debug session.

Signals

Y ou can view the signals defined on the selected debug target and how the debugger handles each one.

Related concepts
Overview of the CDT
Debug overview

Related tasks
Debugging

Related reference

Run and Debug dialog box
Debug views

£ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_run_dbg_pages.htm
file:///C|/test/docs/reference/cdt_o_dbg_view.htm

C/C++ search

Y ou can conduct afully or partially qualified name search. Further qualifying a search increases the
accuracy and relevance of search results. The sections below provide guidance on how to control the
scope of your search through the use of search delimiters, correct syntax, and wildcards.

Y ou can search for:

language constructs within:
o projectsin your workspace
o selected resources from various views
o working sets
. aworking set for references to particular elements
. declarations of particular elements
. definitions of particular elements
. references of particular elements

For information on working sets, see Workbench User Guide > Concepts > Workbench > Working
sets

What you can search for

The table below lists the element types that you can search for and special considerations to note when
searching for a given element type. Y ou can search for some or all of the element types matching a
search string that you specify. If you choose to search for matching elements, all types, macros, and
typdefs are included in the search.

Element Note
Searches for classes and structs.

Y ou can further qualify the search by
Class/Struct |specifying "class' or "struct” in front of the
[name that you are searching for. Specifying
"class' or "struct" also alows you to search for
anonymous classes and structures.

Searches for global functions or functionsin a
|namespace (functions that are not members of a
class, struct, or union).

Y ou can specify parameters to further qualify
your search. When specifying a parameter list,
leverything between the parentheses should be
valid C/C++ syntax.

Function

Do not specify the return type of the function.

Searches for variables that are not members of a
Iclass, struct, or union.

Searches for unions.

Variable

Jnion /A nonymous unions can be searched for by

specifying "union” as the search pattern.
Searches for methods that are members of a
lclass, struct, or union.

Method

Searching for methods also finds constructors
and destructors. See above note for functions.

Searches for fields that are members of a class,
struct, or union.

Enumeration|Searches for enumerations.
Enumerator |Searches for enumerators.
Namespace [Searches for namespaces.

Field

How you can limit your search
Y ou can limit your search to one or al of the following:

. Declarations
. References
. Definitions (for functions, methods, variables and fields)

Y ou can control the scope of the search by specifying which of the following isto be searched:

. Workspace
. Working Set
. Selected Resources

Wildcard characters

Y ou can use wildcard characters to further refine your search.

[Use thiswildcard character [To search for this
Any string

Tip:

* Use the character * to search
for operators that begin with *.
See syntax examplesin the
table below.

? A single character
Nested elements

Tip: Do not use wild cards between the brackets of afunction or method pattern. For example, the
search stringf (*) isaninvalid search that resultsin a search for any function f because the asterisk
Isinterpreted as a pointer rather than awild card.

Syntax examples

The table below provides syntax examples and an explanation for each example to help you conduct an
effective search.

Syntax Sear chesfor this
A nested element
[two levels deep
ny two-letter name
IFIIYLA? that begins with A
and istwo levels deep
Searches for A not
Inested in anything
. Any function taking
() Ino parameters
Any function taking
*CA*r) 1 parameter that isa
[pointer to type A

il search for
function f taking 1
parameter that is an
int *

il search for a
function f, taking 2
parameters, oneisa
const char array, the
other isareferenceto

f(int *)

f(const char [], A &)

type A
operator * Finds only operator *
_ Finds only operator
operator *= e
operator * Finds all operators
ol ass Searches for
anonymous classes
struct Searches for
anonymous structs
uni on Searches for

anonymous unions

Search results

Search results are displayed in the Search view. Y ou can sort your search by Name, Parent Name and
Path. Y ou can also repeat your last search.

Search Concepts

Declarations

According to the ANSI C++ Spec, adeclaration is a statement that “introduces a name into atransation
unit or re-declares a name that has been previoudy introduced by a previous declaration.

All C/C++ search elements can be searched for declarations.
Definitions

Most declarations are also definitions; in other words, they also define the entity for they declare the
name for. However there are some elements that can have separate definitions from their declarations.

For C/C++ search the following elements can be searched for definitions:

. Functions/Methods — the definition is where the code implementation resides
. Variable:
1. Extern —the definition iswhere the variable isinitialized
2. Non extern - the definition of avariableiswhereit is declared
. Fied:
1. Static fields - the definition of a static field iswhere it getsinitialized
2. Non static fields - the definition corresponds to the fields declaration
. Namespace — the definition of a namespace is the same as its declaration

References

By selecting references, C/C++ search will return all of the places the selected element is used.

All Occurrences

Selecting ‘All Occurrences' in the Limit To section will result in a search for declarations, definitions (if
applicable) and references for whatever element or elements have been selected.

Any Element

Selecting ‘Any Element’ in the Search For section will result in a search for all of the listed elements
plus macros and typedefs.

For more information, see:

. Workbench User Guide > Concepts> Views > Search view
. Workbench User Guide > Tasks> Navigating and finding resour ces

Related concepts
C/C++ Indexer

CDT Projects
Open Declarations

Related tasks
Searching for C/C++ € ements
Navigating to C/C++ declarations

Related reference

C/C++ search page, Search dialog box
C/C++ perspective icons

£ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_u_search.htm
file:///C|/test/docs/reference/cdt_u_icons.htm

C/C++ Indexer

The C/C++ indexer uses the parser to create a database of your source and header files that provides the
basis for C/C++ search, navigation features and parts of content assist.

The indexer runs on a background thread and reacts to resource change events such as.

« C/C++ project creation/deletion
. Source files creation/deletion

. Fileimports

. Source file content changes

It is possible to customize the behavior of the indexer through the use of source folders or even turn it
off completely. This customizable behavior is available on a per-project basis (i.e. it is possible to have
different indexer settings for each project in your workspace).

Related concepts

C/C++ search

C/C++ Indexer Problem Reporting

C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Related tasks
Selection Searching for C/C++ e ements

Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Related reference

Search, C/C++ Preferences window

C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, |ndexer
C/C++ Project Properties, Standard, | ndexer

file:///C|/test/docs/tasks/cdt_t_endis_indexer.htm
file:///C|/test/docs/tasks/cdt_t_indexer_prob_rep.htm
file:///C|/test/docs/tasks/cdt_t_indexer_timeout.htm
file:///C|/test/docs/tasks/cdt_t_set_src_fold.htm
file:///C|/test/docs/reference/cdt_u_search_pref.htm
file:///C|/test/docs/reference/cdt_u_search.htm
file:///C|/test/docs/reference/cdt_u_mprop_indexer.htm
file:///C|/test/docs/reference/cdt_u_sprop_indexer.htm

€ Copyright IBM Corporation and others 2000, 2004,

C/C++ Indexer Problem Reporting

C/C++ Index Problem reporting places a problem marker on the editor and adds an item to the error list
for each preprocessor or semantic problem reported by the parser. Note that the markers will only show
up the next time the file isindexed.

Note: Thisfeature is not recommended for large projects.

Preprocessor Problems

In order for search and search related features to work properly, it isimperative that include paths are set
up properly so that the parser can find source files and index them. If you suspect that your search
results are lacking, you can turn on the preprocessor problem markers. These will place amarker on the
line that has the preprocessor problem.

Thisincludes:

. Pound error

. Inclusion not found

. Definition not found

. Invalid macro definition

. Invalid directive

. Conditional evaluation error

Semantic Problems
The problem markers can also indicate semantic errors in your code.
The errors flagged include:

. Name not found

. Invalid overload

. Invalidusing

. Ambiguous lookup
. Invalidtype

« Circular inheritance
« Invalid template

Related concepts

C/C++ search

C/C++ Indexer

C/C++ Indexer Opening or Closing a project
C/C++ Indexer Progress Bar

Related tasks
Selection Searching for C/C++ elements

Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Related reference

Search, C/C++ Preferences window

C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, |ndexer
C/C++ Project Properties, Standard, | ndexer

& Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/tasks/cdt_t_endis_indexer.htm
file:///C|/test/docs/tasks/cdt_t_indexer_prob_rep.htm
file:///C|/test/docs/tasks/cdt_t_indexer_timeout.htm
file:///C|/test/docs/tasks/cdt_t_set_src_fold.htm
file:///C|/test/docs/reference/cdt_u_search_pref.htm
file:///C|/test/docs/reference/cdt_u_search.htm
file:///C|/test/docs/reference/cdt_u_mprop_indexer.htm
file:///C|/test/docs/reference/cdt_u_sprop_indexer.htm

C/C++ Indexer Opening or Closing a project

The user opening a previously closed project results in the entire project being re-indexed.

Closing a project results in the index being deleted. Search features will not reperot any results for
closed projects.

Related concepts

C/C++ search

C/C++ Indexer

C/C++ Indexer Problem Reporting
C/C++ Indexer Progress Bar

Related tasks
Selection Searching for C/C++ elements

Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer — Indexer Timeout
Setting Source Folders

Related reference

Search, C/C++ Preferences window

C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, |ndexer
C/C++ Project Properties, Standard, | ndexer

i Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/tasks/cdt_t_endis_indexer.htm
file:///C|/test/docs/tasks/cdt_t_indexer_prob_rep.htm
file:///C|/test/docs/tasks/cdt_t_indexer_timeout.htm
file:///C|/test/docs/tasks/cdt_t_set_src_fold.htm
file:///C|/test/docs/reference/cdt_u_search_pref.htm
file:///C|/test/docs/reference/cdt_u_search.htm
file:///C|/test/docs/reference/cdt_u_mprop_indexer.htm
file:///C|/test/docs/reference/cdt_u_sprop_indexer.htm

C/C++ Indexer Progress Bar

The indexer progress bar shows the progress status of the indexing jobs in the progress views.

The indexing jobs can be temporarily paused by pressing the stop button on the progress bar. Thiswill
cause the indexer to wait until the next time the user runs a search job or makes a change to an indexed
element (by such actions as modifying an existing source file, deleting afile, creating a new file, moving
file and so on). The indexer at this point will resume with the previously postponed indexing job before
moving on to the new one.

If you wish to cease indexing all together, you can cancel an indexing job and disable the indexer
through the properties.

Related concepts

C/C++ search

C/C++ Indexer

C/C++ Indexer Problem Reporting

C/C++ Indexer Opening or Closing a project

Related tasks
Selection Searching for C/C++ elements

Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

Related reference

Search, C/C++ Preferences window

C/C++ search page, Search dialog box
C/C++ Project Properties, Managed, |ndexer
C/C++ Project Properties, Standard, | ndexer

£} Copyright IBM Corporation and othars 2000, 2004,

file:///C|/test/docs/tasks/cdt_t_endis_indexer.htm
file:///C|/test/docs/tasks/cdt_t_indexer_prob_rep.htm
file:///C|/test/docs/tasks/cdt_t_indexer_timeout.htm
file:///C|/test/docs/tasks/cdt_t_set_src_fold.htm
file:///C|/test/docs/reference/cdt_u_search_pref.htm
file:///C|/test/docs/reference/cdt_u_search.htm
file:///C|/test/docs/reference/cdt_u_mprop_indexer.htm
file:///C|/test/docs/reference/cdt_u_sprop_indexer.htm

Searching External Files

C/C++ search, by default, will only search your workspace. If you wish to search external filesthat are
included by filesin your workspace but don’t reside in your workspace, you must enable external search
markers.

When amatch in an external fileis now found, it will be linked into your project and you will be able to
open the match from the search pane as usual.

When aproject is closed, or the workbench is shutdown the links are removed.

Related concepts
C/C++ search

Related tasks
Searching External Files

Related reference

Search, C/C++ Preferences window
C/C++ search page, Search dialog box

£ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/tasks/cdt_t_search_ext.htm
file:///C|/test/docs/reference/cdt_u_search_pref.htm
file:///C|/test/docs/reference/cdt_u_search.htm

Tasks

Task topics provide step-by-step procedural instructions to help you perform required tasks.

Creating a project
Working with C/C++ project files
Displaying C/C++ file components in the C/C++ Projects view
Converting a C or C++ nature for a project
Creating a C/C++ file
Creating a makefile
Hiding files by type in the C/C++ Projects view
Converting CDT 1.x Projects
Adding Convert to a C/C++ Make Project to the New menu
Set Discovery Options
Writing code
Customizing the C/C++ editor
Commenting out code
Working with Content Assist
Using Content Assist
Creating and editing code templates
Importing and exporting code templates
Shifting lines of code to the right or left
Navigating to C/C++ declarations
Refactoring
Building projects
Renaming a project
Selecting referenced projects
Defining build settings
Filtering errors
Selecting a binary parser
Adding Include paths and symbols
Selecting a deployment platform
Setting build order
Building Manually
Removing Build Automatically
Autosaving on a build
Creating a make target
Customizing the Console view
Viewing and managing compile errors
Jumping to errors
Filtering the Tasks view
Setting reminders

Running and debugging projects
Creating or editing a run/debug configuration
Selecting a run or debug configuration
Creating a run or debug configuration
Selecting an application to run or debug
Specifying execution arguments
Setting environment variables
Defining debug settings
Specifying the location of source files
Specifying the location of the run configuration
Debugging
Debugging a program
Working with breakpoints and watchpoints
Adding breakpoints
Adding watchpoints
Removing breakpoints and watchpoints
Enabling and disabling breakpoints and watchpoints
Controlling debug execution
Stepping into assembler functions
Working with variables
Adding expressions
Working with registers
Working with memory
Searching for C/C++ elements
Selection Searching for C/C++ elements
Searching External Files
Enable/Disable the C/C++ Indexer
C/C++ Indexer Problem Reporting
C/C++ Indexer - Indexer Timeout
Setting Source Folders

€ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/tasks/cdt_t_search_ext.htm
file:///C|/test/docs/tasks/cdt_t_endis_indexer.htm
file:///C|/test/docs/tasks/cdt_t_indexer_prob_rep.htm
file:///C|/test/docs/tasks/cdt_t_indexer_timeout.htm
file:///C|/test/docs/tasks/cdt_t_set_src_fold.htm

Creating a project
You can create a standard make or managed make C or C++ project.

To create a project:

1. Click File > New > Project.

£~ C/C++ - Eclipse Platform

|File Edit Mavigate Search Project Run Window Help

SV = Project... < |
Zlose (CErl+F4 .@» Class
Clase Al ZhrlH-ShifE-F —
| File
M- G+ % Folder
. SavE A5, ., -
= other, ., Chrl4+-M
| Chri4Shift+s

2. In the New Project wizard, click C or C++.
3. Choose either a Standard Make C++ Project or a Managed Make C++ Project.

ook

£~ MNew Project

Select a wizard

Wizards:

----- (3% Java Project

----- 1 Plug-in Project

----- @ Managed Make C Project
----- Standard Make C Project

----- Managed Make C++ Project

Standard Make C++ Project
e NS

~L—=+ Java

= Plug-in Developrment

~[= Simple

= Back Mexk = Fimist

Cancel

Click Next.
In the Name box, type a name.

To specify a different directory in which to save your project, clear the Use Default Location check

box, and enter the path in the Location box.

For managed make projects, click Next to select a deployment platform. For more information, see

Selecting a deployment platform.
To create your project, click Finish.

£~ New Project x|

Managed Make C++ Project
Zreate a new Managed Make C++ Project,

Project name:

Projeck conkents
v Use default

Direchor: I i_:\Program Files\eclipse\workspace Browse, . .

< Back Mext = Fimish I Zancel

9. If a message box prompts you to switch perspectives, click Yes.
10. Define your project properties. For more information, see Defining project properties.

Related concepts
CDT Projects
Project file views

Related tasks
Working with C/C++ project files

Related reference
Project properties
Views

€ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/tasks/cdt_o_proj_prop.htm
file:///C|/test/docs/reference/cdt_o_proj_prop_pages.htm
file:///C|/test/docs/reference/cdt_o_views.htm

Working with C/C++ project files

This section explains how to create and manage project files.

Displaying C/C++ file components in the C/C++ Projects view
Converting a C or C++ nature for a project

Creating a C/C++ file

Creating a makefile

Hiding files by type in the C/C++ Projects view

Converting CDT 1.x Projects

Adding Convert to a C/C++ Make Project to the New menu
Set Discovery Options

& Copyright IBM Corporation and others 2000, 2004,

Displaying C/C++ file components in the C/C++ Projects

view

File components are displayed in the C/C++ Projects view and in the Outline view. You can display or hide all file
components in the C/C++ Projects view.

To display file components

1. Click Window > Preferences.
2. In the Preferences dialog box, select C/C++ from the list.

£~ Preferences

=10] x|

[+ Ant

- N

~File

Import...

[+ Warkbench -
. Build Crder
- Build Console

- Zode Templates
[=]- Debug

Source Code Locakions —

- Editar

Tvpes

- Make Targets
- W Make Projects

- Search ;I

Export... |

C/C++

[Link view selection to ackive editor
¥ Show file members in Project Yiew

[Follow #include's when producing the outling view

Restare Defaults

Apply |

K

Zancel |

3. Select the Show file members in Project View check box.

4. Click OK.

5. In the C/C++ Projects view, double-click a file component.
The component is highlighted in the C/C++ editor.

r'-Efl:Z,l'l:++ Frojects X Mavigakor = O

LTl

e

EI'[:..':- Hellawarld

=< Einaries

ﬁ hello,exe - [x36le]
H--[15 Includes

3@

e Bl iostrearn

...... 21 string
P @ main) ; ink
EJ----% hello.exe - [x56le]
- main.a - [x56le]
...... [makefile
-fe Shapes
EEI""'[EE' Test

The C/C++ Projects view can also be filtered to show certain types of file components. For more information, see
Hiding files by type in the C/C++ Projects view.

Related concepts

CDT Projects
Project file views

Related tasks

Hiding files by type in the C/C++ Projects view
Searching for C/C++ elements

Navigate to C/C++ declarations

Related reference
C/C++ editor, code templates and search preferences

€ Copyright IBM Corperation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_ceditor_pref.htm

Converting a C or C++ nature for a project

You can assign a C nature to a C++ file or vice versa.

To assign a C or C++ nature to a project

1. Click File > New > Other.

Select a wizard

Corvert bo a CfC4++ Project which uses a simple makefile

Wizards:

..... @ Class

----- -@ Extension Point Schema
----- £ Interface

----- (3% Java Project

----- 14 Plug-in Project

B CH+

A~ Class

[Conwvert to a CJC++ Make Project
----- @ Managed Make C Project
----- Standard Make C Project

Convert to a C)C++ Make Projeck
----- @ Managed Make C++ Project
Standard Make C++ Projeck

Click Next.

NoOOA®WN

Click Finish.

Click Convert to C/C++ Make Project.

- WS
[l — Tzwa ;I
e
Mext = I Finish Cancel
Click C or C++.

In the Candidates for conversion list, select the projects to convert.
In the Convert to C or C++ box, click C Project or C++ Project.

Related concepts
CDT Projects
Project file views

Related tasks
Writing code

Related reference
Project properties

€ Copyright IBM Corporation and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_proj_prop_pages.htm

Creating a C/C++ file

Files are edited in the C/C++ editor that is by default, located in the editor area to the right of the C/C++
Projects view.

The marker bar on the left margin of the C/C++ editor, displays icons for errors, warnings, bookmarks,
breakpoints and tasks.

For more information on the marker bar, see Workbench User Guide > Reference > User interface
information > Views and editors > Editor area.

To create a C++ file:

1. In the C++ Projects view, right-click a project, and select New > File.

£~ LC/C++ - Eclipse Platform

File Edit MNavigate Search Projeck Run Window Help

| @ ¢ SB [$-0-%-|® 5 |
EEIW‘f

roiecks

Mavigakor r:Eﬁfiu::ru::++ F

-l
C
o] o
Tc'%-
o Inko @
Class
Euild Make Target... " Faolder
Create Make Target. .. _
_ _ 2 = Dther,.. Ckrl4r
Build Project

Rebuild Projeck

2. Inthe list of projects, verify that the correct project is selected.
3. In the File name box, type a name followed by the appropriate extension.
4. Click Finish.

File

iZreake a new file resource,

Enter or select the parent folder:

Hellowiorld

A

— == Helloworld
IEE;.- Shapes
Loles Test

File mame: I |

advanced »= |

Fimish

Zancel

The file will open in the C/C++ editor.

5. Enter your code in the editor view..

G main.con x N

#include <iostream:>
#include <string:>
using namespace std;

int maini)
1
string wyourlamme:

cout << "Enter wour natme: M
cin >» wyourMaane;
cout << "Hello "™ 4+ wvourlMame << endl;

return 0O;
h

|
ki

7l

6. Type CTRL+S to save the file.

Related concepts
CDT Projects
Project file views

Related tasks
Displaying C/C++ file components in the C/C++ Projects view
Hiding files by type in the C/C++ Projects view

Related reference
Project properties

& Copyright IBM Corperatien and others 2000, 2004,

file:///C|/test/docs/reference/cdt_o_proj_prop_pages.htm

Creating a makefile

If you have created a Standard Make C/C++ Project, you need to provide a makefile.

When you build a project, output from make is displayed in the Console view. Makefile actions are
displayed in the Make Targets view.

To create a makefile:

1. In the C++ Projects view, right-click a project, and select New > File.

£~ C/C++ - Eclipse Platform

File Edit Mavigate Search Projeck Run Window Help

|| | | GSE [H-0-%-|® 5 |

toiecks

C

= = Project...

I:E-f-
o Inko @ Class
Euild Make Target... ¥ Falder
i_reate Make Target. .. _

_ _ d = Other. .. Chrl-4+1

Build Project —

Febuild Projeck

2. In the File name box, type makefile.
3. Inthe list of projects, verify that the correct project is selected.
4. Click Finish.

	C/C++ Development Toolkit User Guide
	Before you begin
	What's new
	Getting Started
	How to bring C/C++ source files into Eclipse
	Updating the CDT

	Concepts
	CDT overview
	CDT projects
	Perspectives available to C/C++ developers
	Views in the C/C++ perspective
	Coding aids
	Comments
	Content Assist
	Templates

	Editing C/C++ Files
	C/C++ editor
	Makefile

	Navigation Aids
	Outline view
	Project file views
	Open declarations

	Build
	Building C/C++ projects
	Managed Build System Extensibility Document

	Debug
	Breakpoints
	Debug overview
	Debug information

	C/C++ search
	C/C++ Indexer
	C/C++ Indexer Problem Reporting
	C/C++ Indexer Opening or Closing a project
	C/C++ Indexer Progress Bar
	Searching External Files

	Local Disk
	Tasks
	Creating a project
	Working with C/C++ project files
	Displaying C/C++ file components in the C/C++ Projects view
	Converting a C or C++ nature for a project
	Creating a C/C++ file
	Creating a makefile
	Hiding files by type in the C/C++ Projects view
	Converting CDT 1.x Projects
	Adding Convert to a C/C++ Make Project to the New menu
	Set Discovery Options

	Writing code
	Customizing the C/C++ editor
	Commenting out code
	Working with Content Assist

